UNIVERSITE
@ DE LORRAINE Master M2 IMSD

Recherche Opérationnelle

Chapitre 1 : Programmation linéaire

J.-F. Scheid
Institute Elie Cartan de Lorraine/Télécom Nancy
Université de Lorraine

2025-26 (version du 12/1/2026)

Table des matiéres

@ Notations et rappels d’algebre linéaire
© Introduction

© Méthode du simplexe

@ Dualite

@ Introduction et définitions

@ Théorémes de dualité

@ Théoréme des écarts complémentaires
e Méthodes primal-dual

© Quelques solveurs de PL

Notations et rappels d’'algébre linéaire

) Notations et rappels d'algebre linéaire

Quelques rappels sur les vecteurs et matrices.
X1
On note x = : un vecteur (en colonne) de R".
Xn
e On fait la distinction entre vecteur ligne et vecteur colonne. Les vecteurs
sont tous des vecteurs colonne par défaut. Le symbole de transposition T

permet d’obtenir un vecteur ligne : x' = (x1,- -+, X,).
e Produit scalaire entre 2 vecteurs x et y :

n
xTy = xiy1+ - + Xoyn = ZX"V"
i=1

On notera parfois (x|y) :=x"y

Notations et rappels d’'algébre linéaire

e Matrice A de taille (m, n);

e Produit matrice x vecteur. Soit x € R". Le vecteur y = Ax € R est
donné par
X1

n
yi=(Ax)i=(am, - am) | 1 | =D apxi
Xn =1

e Produit matrice x matrice. Soit B une matrice de taille (n, p). La matrice
C = AB de taille (m, p) est donnée par

blj

n
ci = (ait, -, ain) : = Z ajk by
by k=1

e Transposition d'un produit. On a (AB)" = BTAT.

Notations et rappels d'algébre linéaire
e Systéme linéaire et inéquations linéaires. Soit b € R™. On a
ajxi+ -+ apxn = b
Ax = b <= :
amiX1+ -+ amnXn = bm
Un vecteur x € R” vérifiant (1) est dit solution du systéme linéaire.
On écrira I'inéquation vectorielle
Ax<b
si et seulement si (Ax); < b; pour tout i.

e Matrice inversible. Soit A une matrice carrée de taille (n, n).

A est dite inversible s'il existe une matrice notée A~! telle que
AA~Y = AYA = |, ou I, désigne la matrice identité (des 1 sur la
diagonale, 0 partout ailleurs).

A est inversible < les colonnes de A sont linéairement
indépendantes
& le systéme linéaire Ax = b admet une unique
solution x donnée par x = A~ tb.

Notations et rappels d'algébre linéaire

e Produit par blocs. Soit A de taille (m, n). On décompose en blocs

horizontaux la matrice
A= (A1 A)

ol Aj est de taille (m, n1) et A de taille (m, np) (méme nombre de lignes
que A) avec n=n; + np. On a

Ax = A1x1 + Axxo (3)

X
pour x = <xl> € R et x; € R™M, xp € R™,
2

Introduction

1) Introduction

Soient deux vecteurs b = (b1, -+, by)T €R™, c=(c1, -+ ,¢,)" €R" et
une matrice rectangulaire A de taille (m, n).

On considére le probléme de programmation linéaire suivant (encore appelé
programme linéaire et en abrégé PL) :
T

max F(x) =c' x=c1x1 + -+ + CnXp
xERN

sous les contraintes
Ax <b
x>0

Contraintes inégalités Ax < b : PL sous forme canonique pure.

Contraintes égalités Ax = b : PL est sous forme standard.

Introduction

Proposition

Tout PL sous forme standard s'écrit de facon équivalent en un PL sous
forme canonique pure et inversement.

@ Soit un PL sous forme canonique pure, montrons qu'il peut s'écrire en
un PL sous forme standard. On a

Ax<b& Ax+e=b,e>0

otie= (e, -+ ,en) €R™ sont appelées les variables d'écart. Ainsi,
Ax <b - Az =b
x>0 x>0

avec la matrice A = (A | I,) de taille (m, n+ m), I, désignant la

. o - X
matrice identité d'ordre m et X = . e Rt

@ Pour la réciproque, il suffit d'écrire I'égalité (dans les contraintes du
probléme sous forme standard) comme 2 inégalités < et >.

Introduction

Exemple. On considére le PL du probléme de production donné dans
I'Introduction générale. Sous forme canonique pure, il s'écrit

max_[F(x1,x2) = 6x1 + 4x2] .
(x1,%2)

3x1 +9x < 81

4xy + 5xp < 55 (4)
2x1 +xp < 20

X1, X2 Z 0

Ecrivons-le sous forme standard en introduisant 3 variables d'écarts e, e
et e3:

max [F(x1,x2, €1, €2, €3) = 6x1 + 4x2] .
(x1,x2,€1,€2,€3)

3x1 +9x + e =81

4x1 +5xp + e =55 (5)
2x1 +x0 +e3 =20

X1, X2, €1,€,€e3 >0

Introduction

Remarque. La positivité des variables assure |'équivalence des deux formes.
En fait, on peut toujours se ramener au cas de variables positives x > 0 :

@ Si une variable x; a une borne inférieure / < x;, on introduit une
nouvelle variable y; = x; — 1 > 0.

@ S'il n'y a pas de borne inférieure sur x;, on pose x; = y; — z; avec deux
nouvelles variables y; > 0, z; > 0.

10

Méthode du simplexe

[Il) Méthode du simplexe (Dantzig 1947)

On considére un PL sous forme standard

max F(x) = c'x=cixi + - CaXp
xER"

Ax=Db
x>0
ou A est une matrice de taille (m, n).

Hypothése de rang plein® : On suppose que rang(A) = m < n.

Sous cette hypothése, le systéme Ax = b admet toujours des solutions 2
L'hypothése de rang plein n'est pas restrictive car si rang(A) < m le
systéme Ax = b n'a pas de solution en général.

1. Le rang de A est le nombre maximal de lignes de A linéairement indépendantes (=
nombre de colonnes de A linéairement indépendantes).
2. si m < n, le systéme Ax = b admet une infinité de solutions; si m = n, la matrice A
est inversible (solution unique x = A™'b, il n'y a rien 3 maximiser).
11

Méthode du simplexe

1. Solution de base réalisable.

On note

Dr={xeR", Ax=b, x>0} (6)

I'ensemble des solutions réalisables. L'ensemble Dy est un polyedre 3
convexe, fermé.
Définition d'une solution de base.

Soit B C {1,---,n} un ensemble d'indices avec card(B) = m tel que la
matrice carrée Ag formée des colonnes A/, j € B, est inversible.

e On dit que I'ensemble B est une base et que
— les variables xg = (x;, j € B) sont les variables de base.
— les variables xy = (x;j, j ¢ B) sont les variables hors-base.

On notera H={j € {1,--- ,n},j & B} I'ensemble des indices
correspondants aux variables hors-base.

3. Un polyédre Q de R” est défini par Q = {x € R", Mx < b} ot M est une matrice
de taille (m, n).

12

Méthode du simplexe

Solution de base (suite)

. X . oz &
e On dit que x = <XB> est une solution de base associée a la base B
H

si: ¢ Ax=0b
XHZO

Décomposition par blocs et expression des variables de base en fonction des
variables hors-base.

A une renumérotation prés (une permutation) des colonnes de A, on peut
toujours écrire les décompositions par blocs :

A= (Ag| Ay), x= <XB>

XH
ol Ay est la matrice formée des colonnes A/, j € H.

13

Méthode du simplexe
Le systéme Ax = b est alors équivalent a
Apxg + Apxy = b.

et on obtient

Ax=b & |xg = Ag(b— Auxn) (7)

On en déduit la caractérisation suivante des solutions de base.

Caractérisation des solutions de base.

. X 28
Une solution de base x = < B) est caractérisée par

XH

XB = AElb, XH = 0 (8)

Une solution de base x est réalisable si x € Dg. Autrement dit :

Solution de base réalisable

Une solution de base x est dite réalisable si xg > 0 (avec xg = Ag'b).

14

Méthode du simplexe

2. Caractérisation de I'optimum.

e Un exemple. On considére le PL suivant (probléme de production)

(max [F(x1,%2) = 6x1 + 4x2] .
x1,%2

sous les contraintes :
3x1 + 9% < 81 (9)
4x1 + 5xp < b5
2x1 + x0 < 20
X1, X2 Z 0

On peut résoudre graphiquement ce PL en dessinant tout d'abord
I'ensemble Dg des solutions réalisables puis en faisant varier la constante C
de la droite d'équation F(xi,x2) = C. Partant d'une grandeur valeur
positive, on diminue C jusqu'a ce que la droite vienne "toucher" |'ensemble
Dkg. La solution optimale est atteint en un sommet x* = (7.5, 5)".

15

Méthode du simplexe

14

12

101
solution optimale x*

X2

@ La solution optimale est atteinte en un sommet du polyédre.

16

Méthode du simplexe

Le probléeme (9) s'écrit sous forme standard (variables d'écart e;,e2,€3) :

max |[F(x) = c'x]|.
3{[/4be] (10)

x>0
avec
X1 6
X0 4 39100 81
x=]|e|,c=]0],A=|4 5 0 1 0],b=1]55
& 0 21001 20
€3 0

On a rang(A) = 3 et il y a 5 solutions de base réalisables x = <;(B>.
H

17

Méthode du simplexe

Par exemple :

1 00
@ Base B={3,4,5} avec Ag = [0 1 0| ; solution de base
0 01
€1 81 X 0
réalisablexg = [ex | = | 55 |, xy = < 1> = <)
X2 0
€3 20

391
e Base B={1,2,3} avec Ag = |4 5 0] ; solution de base
210

X1
. _ 0
réalisable xg = | xo | avec xg = ABlb, Xy = <62> = < >
€1

18

Méthode du simplexe
Caractérisation de I'optimum.
e Sommet d'un polyédre. Un point x € Dg est un sommet s'il n'existe
pas de pointsy, z€ D,y #z telsquex =y + (1 — N)zavec 0 < A < 1.
Théoréme |
@ x est une solution de base réalisable si et seulement si x est un
sommet de Dg.

@ Le maximum de la fonction objectif F sur Dg, s'il existe, est atteint
en au moins un sommet de Dg.

Il suffit donc de se restreindre aux solutions de base réalisables. Au plus C/"
solutions de base réalisables (toutes ne sont pas réalisables) avec un codt
de O(m3) opérations pour déterminer la solution du systéme Agxg = b
(méthode directe de type Gauss/factorisation LU).

= nombre d’'opérations d’ordre O(m3C/™), ce qui devient vite énorme :

pas d'exploration exhaustive possible des solutions.

Avec la méthode du simplexe, on va explorer seulement les sommets qui
permettent d'augmenter F et on évitera ainsi d'explorer tous les sommets. ;g

Méthode du simplexe

Algorithme du simplexe.

On suppose qu'on dispose d'une solution de base réalisable x associée a une
base B. On veut trouver une autre base B* et x* solution de base réalisable
"voisine" telle que x* est meilleure que x, au sens ol :

F(x*) > F(x) (11)

Principe de la méthode du simplexe : faire rentrer une variable
hors-base dans la nouvelle base (variable entrante) et faire sortir a la place
une variable de base (variable sortante).

eVariable entrante. On exprime F en fonction des variables hors-base.
Proposition (Codts réduits)

Pour tout x € Dg = {x € R", Ax=">b, x>0}, on a

F(x)= F(x)+Lixy avec L} =c/ — chglAH. (12)

Ly est le vecteur des coiits réduits.

20

Méthode du simplexe

Choix de la variable entrante

La variable entrante x. est la variable hors-base (une composante de xy)
qui a le codt réduit (coefficient de Ly) positif le plus grand possible.

Si les colts réduits sont tous négatifs (Ly < 0), la méthode du simplexe
s'arréte (fin normale) : la solution de base réalisable x est optimale.

eVariable sortante. On maintient la relation Ax = b avec x > 0.

Ax=b <
=
<~
<~

Apxg + A®x. = b oll A® est |la e-iéme colonne de A
xg = Ag' (b — A°x.)

X = Xg — AEIAGXe

XB = Xg — ZXe avec z = AElAe e R™,

Choix de la variable sortante

On doit avoir xg = xg — zxe > 0. La variable sortante x; est celle qui
s'annule la premiére lorsque x. augmente.

21

Méthode du simplexe

Si z <0 (i.e. toutes les composantes de z sont négatives) alors on a xg > 0
quelque soit xe > 0. La fonction F n'est donc pas bornée (max F = +00) :
arrét de la méthode du simplexe.

Algorithme général.

o

2]

Calcul des variables de base réalisables. Etant donné
A= (Ag|An), on calcule xg = Ag'b > 0.

Calcul des colits réduits L—,_r, = c—l,_—, —cEAElAH. Si Ly <0
alors xg est optimale — arrét.

Détermination de la variable entrante X..

Détermination de la variable sortante xs; (arrét possible
si z<0 : fonction objectif non majorée).

Nouvelle base B* et matrice Apg+ obtenue en remplacant la
colonne A® par A®. Calcul de AE} et retour en 1.

22

Méthode du simplexe

Plusieurs méthodes de mise en ceuvre de la méthode du simplexe qui
différent par la fagon d'effectuer les différents calculs (solution de base
réalisable xg, codts réduits Ly, etc.) : méthode des dictionnaires, méthodes
des tableaux, simplexe révisé.

Méthode des dictionnaires |

@ On exprime les variables de base xg ainsi que F en fonction des
variables hors-base x. On obtient un systéme linéaire qu'on appelle
dictionnaire.

@ On choisit la variable entrante x. comme la composante de xy qui fait
le plus augmenter F (coefficient du codit réduit Ly le plus grand).

@ On détermine la variable sortante xs en maintenant les conditions de
positivité sur les variables de base xg > 0 quand on augmente x, " a
partir de 0.

23

Méthode du simplexe

Exemple du probléme de production (9).

Solution de base réalisable initiale :
x1=0,x =0, e =81, e =55, e3=20avec F =0.

Convergence de la méthode des dictionnaires en 3 étapes. A la derniére
étape, on obtient le dictionnaire :

1 2

27 5 7
91:74‘592_5‘93

F= 65—%62—%63

Codts réduits L}, = (—3,—%) < 0 = I'optimum est atteint et la solution
optimale est

15 27
xj =—,x =5, e{‘:E,e;:O, e3 = 0 avec max F = 65.

24

Dualité Introduction et définitions

IV) Dualité

1) Introduction et définitions

L’exemple du probléme de production (cf Introduction générale). On
suppose qu'un acheteur se présente pour acheter toutes les ressources de
I'entreprise. |l propose les prix unitaires y1, y» et y3 pour chacune des 3
ressources (équipement, énergie, matiére premiére). On suppose que :

@ |'entreprise acceptera de lui vendre toutes ses ressources si elle obtient
pour chaque produit P; et P, un bénéfice plus grand que les prix
unitaires de vente.

@ l'acheteur veut minimiser ses dépenses.

Quels prix y1, y» et y3 doit-il proposer?
Le probléme se modélise par le probléeme dual :
min [G(y1,y2,y3) = 81ly1s + 55y» + 20y3] .
(y1.y2:¥3
3y1+4y2+2y3 > 6 (13)
91 +52+y3 >4

y1,¥2,y3 >0 -

Dualité Introduction et définitions

Définitions
Au programme linéaire primal

max [F(x) = ch}
xeR"

(PL) {Axgb

x>0

ol A est une matrice de taille m x n, on associe le programme linéaire dual

iy (@)=
(PLD) { ATy > c

y=>0

26

Dualité Introduction et définitions

La notion de dualité peut s'introduire avec le Lagrangien
L(x,y)=c x+(b—Ax)"y (14)

associé au PL sous forme standard (contraintes Ax = b) qui peut s'écrire

(primal) : max {minﬁ(x,y), x > o} . (15)

X y

On obtient le probléme dual en échangeant le max et le min :

(dual) : min {mfx (L(x,y), x> O)} : (16)

y

27

Dualité

Introduction et définitions

De facon générale, on a la définition suivante lorsque le probléme primal est

sous forme canonique mixte :

Primal

max {F(x) = ch}

x€RM
n
Vi€ h, ZBUXJ < b;
j=1
n
Vi€ h, Y ajx=b
Jj=1

Vieh, x>0

Vj € J, x; de signe quelconque

avec 11U12:{1,---,m}, I1ﬂ12:®etJ1UJ2:{1,--~,n}, Nt =0.

min |G(y)=b'y
|)

yeRm

Vieh, yi>0

Vi € b, y; de signe quelconque

m
Vj € J, Zaij)/i > ¢

i=1
m

Vi€ Y ajyi=g

i=1

28

Dualité

Cas particuliers primal/dual

Proposition

Introduction et définitions

On a les correspondances suivantes entre probléme primal et dual :

i 6097

(PLD,) { s

y de signes quelconques

it |66) =]
(PLDy) { ATy — c

y de signes quelconques

Dualité Théorémes de dualité
2) Théorémes de dualité
Remarquons tout d'abord le résultat suivant :

Proposition
Le dual du dual est le primal

On s'intéresse a présent au lien entre les solutions de programmes linéaires
en dualité.

THEOREME FAIBLE DE DUALITE

Soit x une solution réalisable d’'un (PL) sous forme canonique (pure ou
mixte) et y une solution réalisable du probléme dual (PLD) associé.
Alors :

Q F(x) < G(y)

@ Si F(x) = G(y) alors x et y sont des solutions optimales de (PL) et
(PLD) respectivement.

30

Dualité Théorémes de dualité

Démonstration de la dualité faible (cas d'un PL sous forme canonique
pure).
@ On ad'une part Ax < b, x>0 et d'autre part ATy >c, y > 0. Par
conséquent,
Fi)=c'x< (ATy) x=yT Ax <yTb=G(y) cary >0
~~
<b
@ Soient x* et y* des solutions réalisables de (PL) et (PLD)
respectivement telles que F(x*) = G(y*). D'aprés 1., pour toute
solution réalisable x de (PL), on a F(x) < G(y*) = F(x*) donc x* est
une solution réalisable optimale qui réalise le maximum de F. Idem
pour y*. O

THEOREME FORT DE DUALITE

Si le probléme primal (PL) admet une solution réalisable optimale x* alors
le probléeme dual (PLD) associé admet lui aussi une solution réalisable
optimale y* et on a

31

Dualité Théorémes de dualité

Idée de la preuve. On suppose (PL) mis sous forme standard.
S'il existe une solution réalisable optimale, alors il existe une solution de
base réalisable optimale xg« = Agib.

On choisit alors

NG
y* — (AB’}) cp* |

On montre que y* est une solution réalisable optimale pour le dual (PLD).

32

Dualité Théorémes de dualité

Il 'y a 3 cas possibles (et seulement 3) pour le probléme primal (PL) :

(1) il existe (au moins) une solution optimale.

(2) I'ensemble Dg des solutions réalisables n'est pas borné et |'optimum
est infini.

(3) pas de solution réalisable (Dg = 0).

Les mémes situations se retrouvent pour le probléme dual.

Théoréme

Etant donnés un probléme primal (PL) et son dual (PLD), une et une seule

des trois situations suivantes peut se produire.

(a) les deux problémes possédent chacun des solutions optimales (a
I'optimum, les colits sont égaux).

(b) un des problémes posséde une solution réalisable avec un optimum
infini, I'autre n'a pas de solution.

(c) aucun des deux problémes ne posséde de solution réalisable.

33

Dualité

Théorémes de dualité

Remarque. Si I'un des problémes posséde une solution réalisable et I'autre n'a

pas de solution réalisable alors le premier a un coiit non-borné (optimum infini).

Ainsi la condition d'optimum infini dans (b) n'est pas nécessaire. En effet, si (PL)

admet une solution réalisable avec un optimum fini alors d'aprés (a) le dual

(PLD) a aussi une solution réalisable.

En résumé. Il y a donc 3 situations (au lieu de 9) :

Dual
(1) solution (2) optimum | (3) non-réalisable
optimale infini
= | (1) solution (a) impossible impossible
£ optimale
a | (2) optimum impossible impossible (b)
infini
(3) non-réalisable impossible (b) (o)

34

Dualité Théoréme des écarts complémentaires

3) Théoréme des écarts complémentaires.
Cas (a) : le primal et le dual possédent chacun des solutions optimales
(optimum fini).

@ On peut alors calculer I'une a partir de |'autre.

Théoréme des écarts complémentaires (TEC) |

Soient x et y des solutions réalisables respectivement du probléme primal
(PL) sous forme canonique mixte et du probléme dual (PLD). Alors x et y
sont des solutions réalisables optimales si et seulement si

n
eViel, Za,-jxj:b,- ouy =0 (17)
j=1
m
.VjGJl, Za;jy,':cj OUXJ':O (18)
i=1
v

Dualité Théoréme des écarts complémentaires

On peut interpréter ce résultat de la fagon suivante :

@ Si une contrainte est satisfaite en tant qu'inégalité stricte dans (PL)
(resp. dans (PLD)) alors la variable correspondante de (PLD) (resp.
de (PL)) est nulle.

@ Si la valeur d'une variable dans (PL) ou (PLD) est
strictement positive alors la contrainte correspondante de |'autre
programme est une égalité.

Démonstration de la condition nécessaire (cas d'un PL sous forme
canonique pure). Soient x et y des solutions réalisables optimales de (PL)
et (PLD) respectivement. On a donc Ax < b, x > 0 et ATy >c, y>0. En
introduisant les variables d'écart e et & respectivement pour (PL) et
(PLD), on a

Ax+e=Db Aly —e=c

x>0,e>0 y>0,e>0

36

Dualité Théoréme des écarts complémentaires

Dans ces conditions,

F(x) = c'x= (ATy — E)TX = yTAx —e'x
Gy)=bTy=(Ax+e)ly=(A)Ty+ely=y Ax+ely.

Or d'aprés le Théoréme de la dualité forte, F(x) = G(y) donc on obtient
e'x+ely=0. (19)
Puisque x > 0 et y > 0, on a nécessairement

{SiX,':O, Vi
eyj =0, Vj

On obtient ainsi les relations, parfois appelées relations d'exclusion :

Siej # 0 alors x; =0 Siej #0alors y; =0
Si x; #0 alors g; =0, Si y; # 0 alors ¢; = 0.

La réciproque (condition suffisante) se démontre & partir du Théoréme

faible de dualité. O
37

Dualité Théoréme des écarts complémentaires

Utilisation pratique du TEC.

La dualité et le TEC permettent souvent de vérifier si une solution
réalisable x d'un (PL) est optimale ou non :

@ on vérifie que x est une solution réalisable de (PL).

@ si on peut, on détermine y par le TEC si on obtient suffisamment
d'équations pour y.

@ on vérifie que y est une solution réalisable du dual (PLD) ou pas en
testant les contraintes non utilisées par le TEC.

Lorsque (PL) et (PLD) ont des solutions réalisables optimales x* et y*
respectivement, on a :

n
. Za;jxf <bi = y;=0
j=1

m
. Za,-jy,-*>cj = x =0
i=1

38

Dualité Théoréme des écarts complémentaires
et
n
oyi*>0 = E a,'j){;k:b,'
j=1

m
* . *— .
*x: >0 = Zauy,- = ¢
i=1

Exemples. 1) Probléme dual du probléme de production

min [G(y) = 8Lyy + 55y2 + 20y3]

3y1+4y> +2y3 > 6
O9y1 +5y> +1y3 > 4
Y1, Y2, Y3 Z 0

On veut vérifier que la solution
x = (x1, %, €e1,e,e) =(15/2, 5,27/2,0,0)"
du primal (PL) est optimale. La solution x est bien réalisable.

39

Dualité Théoréme des écarts complémentaires

Le TEC donne :

-
m
0

61:27/2>0 — y1:O
x1=15/2>0 == 3y +4y,+2y3 =6 (1 =0)

-
m
0

x»=5>0 = Oy1+5y2+y3 =4 (e2=0)
62263:0

En résolvant le systéme pour y, on obtient la solution optimale du probléme
dual :

i = 0, Yo = 1/37 y3 = 7/3.
On vérifie que y est bien réalisable pour (PLD) donc x est optimale (et y
aussi).

2) Exercice : soit le PL

max [F(x) = 2x; — x2 + x3]

< ..
X1+ X N ? On veut savoir si x = (3,1,0) "
Q=X 2 est une solution optimale.
x1+x3=3

X1, X2, x3 >0 40

Dualité Théoréme des écarts complémentaires

On veut savoir si x = (3,1,0) " est une solution optimale. La solution x est
bien réalisable. Sous forme standard, le probléme s’écrit

max [F(x) = 2x; — x2 + x3]
X
x1+x2+e =5
X2—X3—€2:1
x1+x3=23
X1, X2, X3, €1, €2 >0

Le dual (PLD) s'écrit

myin [G(y) = 5y1 + y2 + 3y3]
yitys=>2
ity > -1
—y2+ty3>1
y1 >0, yo <0, y3 de signe quelconque

La solution (réalisable) de PL sous forme standard est
x = (x1,x2,x3,€1,e) =(3,1,0,1,0)"
41

Dualité Théoréme des écarts complémentaires

Le TEC donne

2—(y1+y3)=0 y1=0
—1-(y1+y3)=0 (¢ yp=-1
y1=0 y3 =2

On vérifie que y est bien une solution réalisable du dual (PLD) et donc que
x est optimale (et y aussi).

42

Dualité Méthodes primal-dual

4) Méthodes primal-dual.

Les conditions d'optimalité d'un probléme primal sous forme standard
conduisent - grace au TEC - au probléme suivant :

Ax =b

Aly —e=c
(PD) e'x=0

x> 0,e >0,

y de signes qcq

dont les inconnues sont (x,y, €).
On peut résoudre directement (PD) pour déterminer les solutions optimales
x* (primale) et y* (duale) : on parle alors de méthodes primal-dual.

Le probléme (PD) est non-linéaire a cause de la présence du produit €' x.
On peut utiliser une méthode de descente sur les variables duales prenant
en compte la positivité ou bien des méthodes intérieures (avec Newton
modifiée pour la positivité)

43

Quelques solveurs de PL

IV) Quelques solveurs de PL

La plupart des solveurs résolvent des problémes de programmation linéaire
avec des variables entiéres/réelles : Mixed Integer Linear Programming
(MIP ou MILP).

Certains résolvent aussi les problémes avec une fonction objectif
quadratique (QP, Quadratic Programming) méme non-linéaire, des
contraintes quadratiques (QCP, Quadratically Constrained Programming)
et tous les mélanges possibles : MIQP, MIQCP, ...

@ Gurobi (depuis 2008). Code commercial, licence gratuite bridée
(limitation de la taille des problémes), licence éducation gratuite. C'est
«le» solveur actuel (en 2026).

e CPLEX (IBM). Code commercial, licence éducation gratuite. Une
référence aussi («la» référence ... avant Gurobi).

@ SCIP, solveur universitaire non-commercial trés prometteur...,
développé au Zuse Institute Berlin (ZIB).

@ HiGHS (high performance software for linear optimization), un solveur
LP/MIP/QP aussi prometteur et opensource. 44

Quelques solveurs de PL

COIN-OR (COmputational INfrastructure for Operations Research)
Optimization Suite, une suite de logiciels OpenSource. En particulier,
il contient :

- Clp (Coin-or linear programming), un solveur PL.

- CBC (Coin-or branch and cut), un solveur MILP.
GLPK (GNU Linear Programming Kit). Code OpenSource, pour
résoudre des problémes de petite taille car trés vite «poussif» quand
les problémes deviennent gros. Solveur PL/MILP.

LPSOLVE. Code OpenSource PL/MILP.

AMPL (A Mathematical Programming Language). C'est un langage
de modélisation algébrique (décrire formellement un probléme en vue
de sa résolution numérique) qui ne résout pas directement les
problémes mais prend en charge des dizaines de solveurs (CBC,
CPLEX, Gurobi ... et aussi des solveurs nonlinéaires).

45

Quelques solveurs de PL

et aussi ...

e MATLAB : fonctions linprog pour les PL et intlinprog pour les
MILP ; interfaces pour Gurobi, CPLEX, CBC, Clp, GLPK.

e EXCEL intégre un solveur LP.
o Interfaces Python pour Gurobi, SCIP, GLPK : pulp, pyomo..

o HEXALY (depuis 2012), annonce concurrencer Gurobi pour des
problémes classiques

Formats de données standards.

Tous ces solveurs utilisent les formats de données les plus standards MPS
et LP. Pour une description compléte de ces formats (et d'autres!), vous
pourrez consulter :

https://docs.gurobi.com/projects/optimizer/en/current/reference/

fileformats.html

46

https://docs.gurobi.com/projects/optimizer/en/current/reference/fileformats.html
https://docs.gurobi.com/projects/optimizer/en/current/reference/fileformats.html

Quelques solveurs de PL
Exemples d’utilisation de solveurs. On considére le PL suivant.

max F(x) = 1700x; + 3200x2
3X2 S 39
(1) 1.5x1 +4x, < 60
2x1 + 3xp < 57
3x; <57
x1,x2 >0

© Format de données LP ; écrire dans le fichier exol.1p :

maximize
F : 1700 x1 + 3200 x2
subject to
M1 : 3 x2 <= 39
M2 : 1.5 x1 + 4 x2 <= 60
M3 : 2 x1 + 3 x2 <= 57
M4 : 3 x1 <= 57
end

Quelques solveurs de PL
Par défaut, les variables sont réelles (continues) et positives.

@ Si les variables sont entiéres, il faut ajouter :
int
x1 x2
ou bien si elles sont binaires :
binary
x1l x2
@ Si les variables sont bornées (inf. et/ou sup.), il faut rajouter (par ex.) :

bounds
1 <= x1 <=15
2 <= x2

(a) Exécution directe de GUROBI.

La commande d’exécution (dans un terminal linux ou dans l'invite de
commandes windows) s'écrit :

gurobi_cl ResultFile=exol.sol exol.lp
48

Quelques solveurs de PL

Le fichier de résultat exol.so0l contient alors la solution optimale :

Solution for model F

Objective value = 5.4857142857142855e+04
x1 1.3714285714285714e+01

x2 9.8571428571428577e+00

Remarque. Sous Linux/MacOs, il y a aussi la possibilité d'exécuter
GUROBI directement en ligne de commande (dans un terminal) : lancer
simplement gurobi.cl pour ouvrir I'environnement Gurobi Interactive
Shell (prompt "gurobi>").
Vous pouvez alors utiliser les commandes disponibles :

gurobi> m=read("exol.1lp")

gurobi> m.optimize()

(help() pour obtenir les différentes commandes).

49

Quelques solveurs de PL

(b) Utilisation de Gurobi a partir de python : gurobipy
Le solveur Gurobi est utilisé via un module python appelé gurobipy.

Un PL est défini directement a partir de tableaux numpy et aussi de

matrices creuses (plusieurs types définis dans scipy.sparse)*.

Voici un script possible pour résoudre le probleme (1) (LIRE les
commentaires!) :

La documentation compléte est disponible ici

https://docs.gurobi.com/projects/optimizer/en/current/
reference/python.html

4. C'est un des rares solveurs a proposer ces fonctionnalités qui évitent de perdre du
temps a définir le modéle en rentrant les contraintes une par une (lorsqu’il y a beaucoup
de contraintes, cela peut prendre du temps quand on utilise un langage interprété

comme python).
50

https://docs.gurobi.com/projects/optimizer/en/current/reference/python.html
https://docs.gurobi.com/projects/optimizer/en/current/reference/python.html

Quelques solveurs de PL

import numpy as np
import gurobipy as gp

on définit le vecteur c de la fct objectif

**

8 #*

Mo H H R R

= np.array([1700, 3200])

on définit la matrice A et le vecteur b des contraintes
d’inégalité

= np.array([[0, 3],
[1.5, 4],
[2, 3],
[3, 01D)

= np.array([39, 60, 57, 57])

On définit maintenant le modéle pour gurobi.
1/ I1 faut d’abord instancier un objet de type °‘Modéle Gurobi’’
= gp.Model()

2/ On définit les variables du modéle (le type est ‘MVar Gurobi’’),

il faut donner le nombre de variables (i.e. autant de variables qu’il

y a d’éléments dans c). Pas mal de réglages possibles (type des
variables, bornes inf et/ou sup, donner un nom, etc.). Par défaut,

les variables sont continues et bornées inférieurement par O.

= m.addMVar(len(c)) 51

B # # # # #

8 # # #* #

8 #*

Quelques solveurs de PL

3/ On définit la fonction objectif, exactement comme on ferait pour
définir le produit scalaire entre deux vecteurs numpy, c’est a dire
avec l’opérateur @ (attention cependant si ¢ est bien un tableau
numpy, x joue le rdle d’une sorte de variable formelle). Dans notre
cas il faut préciser qu’on veut maximiser (le défaut est de minimiser)
GRB est un sous-module de gurobipy définissant toutes les constantes.

.setObjective(c @ x, gp.GRB.MAXIMIZE)

4/ Les contraintes se définissent aussi naturellement que la fonction
objectif, c’est & dire avec l’opérateur @ (bien siir pour des contraintes
d’égalité il faudrait utiliser A @ x == b et on pourrait aussi utiliser
A @ x >= b), on peut aussi ajouter autant de contraintes que l’on veut.

.addConstr(A @ x <= b)

5/ reste plus qu’a résoudre, ce qui s’obtient avec

.optimize ()

52

g8 #

H OB H X

#
#
X_
#

#
f_

Quelques solveurs de PL

6/ aprés optimisation, on peut

6-a/ obtenir le statut avec :

.Status

qui retourne 2 pour OPTIMAL, 3 pour INFEASIBLE, 4 pour INF_OR_UNBD

et 5 pour UNBOUNDED mais d’autres possibilités existent comme 1 pour
LOADED (le modéle n’a pas encore été optimisé) ou encore comme 9 pour
TIME_LIMIT (il est possible de définir un temps max & ne pas dépasser).

6-b/ obtenir la solution (si le statut est OPTIMAL) sous forme de liste
avec :

opt = m.X

ou encore np.array(m.X) pour 1l’avoir sous forme de tableau numpy

6-c/ la valeur de la fonction objectif avec
opt = m.0ObjVal

53

Quelques solveurs de PL

Remarques et compléments.

@ Sur les options de la méthode addMVar (nb_vars).

L'argument imposé est le nombre de variables. Par défaut, les variables
sont continues et inférieurement bornées par 0. Il existe (entre autres)
les arguments optionnels suivants :

e 1b=, ub= bornes inférieures et supérieures;
e vtype= type des variables : °C?, >I’, ’B’.

Pour chaque argument, vous pouvez vous contenter d'un scalaire qui
sera valable pour toutes les composantes, sinon il faut un itérable
comme une liste. Pour le probléme précédent, on aurait pu utiliser :

A = np.array([[1.5, 41, [2, 3]11)

b = np.array([60, 57])

instantiation du modéle

m = gp.Model()

on donne les bornes sup lors de la définition des variables
x = m.addMVar(len(c), ub=[19,13])

54

Quelques solveurs de PL

Si vous avez certaines variables bornées supérieurement et pas
d’autres, vous pouvez utiliser le nombre flottant spécial Inf, qui
s'obtient via np.inf ou encore float (’inf’), ainsi pour 3 variables
avec la premiére majorée par 2 et les 2 suivantes non majorées, on
utilisera

ub=[2, np.inf, np.inf]

Lors de I'ajout de contraintes avec la méthode addConstr, si le
second membre est constant (vecteur de 0, de 1, etc.), vous pouvez
utiliser un scalaire, par exemple Ax > 0 peut s'écrire :

m.addConstr(A @ x >= 0)

Les variables gurobi peuvent étre manipulées comme des tableaux
numpy, on peut donc désigner une partie des variables a I'aide d'une
liste d'indices ou de tranches.

55

Quelques solveurs de PL

Exemples :
n = 40
m = gp.Model() # un modéle gurobi
X = m.addMVar(n) # un ‘‘vecteur’’ (de variables gurobi)

a n composantes
X[::2] # toutes les composantes paires
X[1::2] # toutes les composantes impaires
X[:10] # les 10 premiéres composantes
X[-10:] # les 10 derniéres composantes
X[[1,5,7]] # les composantes d’indices 1, 5 et 7

Ces possibilités peuvent &tre utilisées lorsqu'on définit la fonction
objectif et les contraintes.

Exemples.
e si la fonction objectif ne dépend que des m derniéres variables, on
pourra utiliser :
modele est un modéle gurobi
¢ un ndarray 1d de profil (m,)
(coefs s’appliquant aux m derniéres variables)
modele.setObjective(¢ @ X[-m:], gp.GRB.MINIMIZE)

56

Quelques solveurs de PL

o Si les p contraintes Ax <= b ne dépendent que des m premiéres
variables, on pourra se contenter de former un tableau A de profil
(p, m) (au lieu d'un profil (p, n)) et écrire alors :

modele est un modéle gurobi

A un ndarray 2d de profil (p,m)
b un ndarray 1d de profil (p,)
modele.addConstr(A @ X[:m] <= Db)

@ Le solveur peut travailler sur le probléme dual. Ainsi dans certains cas,
il ne peut pas savoir si le primal est non borné ou infaisable (domaine
Dgr = () d’ou parfois la réponse 4 (INF_OR_UNBD) concernant le
statut de |'optimisation. Si on veut savoir de quoi il en retourne, il est
possible de refaire une optimisation du modéle en précisant :

m = gp.Model()

pour savoir si notre probléme est infaisable ou non borné:

m.Params.DualReductions = 0

57

Quelques solveurs de PL

@ |l est possible et fortement conseillé pour les gros problémes d'utiliser
des matrices creuses pour définir la ou les matrices des contraintes.
Seuls les coefficients non-nuls des matrices sont stockés. Il existe
plusieurs formats creux plus ou moins efficaces en fonction des
opérations a effectuer sur ces matrices (insertion/suppression
d’'éléments, multiplications,...)

@ Alternative aux formulations matricielles : quicksum

Plutét que d'écrire |'objectif et les contraintes sous la forme ¢ x et
Ax = 0, on peut utiliser la fonction gurobi quicksum qui permet de
manipuler directement les variables dans des sommes. On peut
également définir des variables indicées dans un dictionnaire python ou
les clés sont les indices.

Exemple. Variables binaires xj; avec i € [1,n], j € [1, m] vérifiant les
contraintes

m
Zx,-j =1, Vie[1,n]
j=1

58

Quelques solveurs de PL

gurobipy est importé avec : import gurobipy as gp
model est un modéle gurobi

définition des variables binaires x[i,j]
x = {} # x est un dictionnaire
for i in range(n):
for j in range(m):
x[(i, j)I=model.addVar(vtype=gp.GRB.BINARY, name=f"x_{i}_{j}")

model.update () # mise & jour du modéle

contraintes
for i in range(n):
model.addConstr(gp.quicksum(x[(i, j)] for j in range(m)) == 1)

gurobi s'arréte lorsqu'il a détecté une solution optimale mais il peut
essayer de trouver I'ensemble des solutions pour un MIP :

recherche de n solutions
space.setParam("PoolSolutions", n)
space.setParam("PoolSearchMode", 2) # pour avoir les meilleures sol.

59

	Notations et rappels d'algèbre linéaire
	Introduction
	Méthode du simplexe
	Dualité
	Introduction et définitions
	Théorèmes de dualité
	Théorème des écarts complémentaires
	Méthodes primal-dual

	Quelques solveurs de PL

