
Master M2 IMSD

Recherche Opérationnelle

Chapitre 1 : Programmation linéaire

J.-F. Scheid
Institute Elie Cartan de Lorraine/Télécom Nancy

Université de Lorraine

2025-26 (version du 12/1/2026)
1

Table des matières

1 Notations et rappels d’algèbre linéaire

2 Introduction

3 Méthode du simplexe

4 Dualité
Introduction et définitions
Théorèmes de dualité
Théorème des écarts complémentaires
Méthodes primal-dual

5 Quelques solveurs de PL

2

Notations et rappels d’algèbre linéaire

I) Notations et rappels d’algèbre linéaire

Quelques rappels sur les vecteurs et matrices.

On note x =

 x1
...
xn

 un vecteur (en colonne) de Rn.

• On fait la distinction entre vecteur ligne et vecteur colonne. Les vecteurs
sont tous des vecteurs colonne par défaut. Le symbole de transposition ⊤
permet d’obtenir un vecteur ligne : x⊤ = (x1, · · · , xn).
• Produit scalaire entre 2 vecteurs x et y :

x⊤y = x1y1 + · · ·+ xnyn =
n∑

i=1

xiyi

On notera parfois (x | y) := x⊤y

3

Notations et rappels d’algèbre linéaire

• Matrice A de taille (m, n) ;

A = (aij)1≤i≤m
1≤j≤n

=

a11 · · · a1n
...

. . .
...

am1 · · · amn


• Produit matrice x vecteur. Soit x ∈ Rn. Le vecteur y = Ax ∈ Rm est
donné par

yi = (Ax)i = (ai1, · · · , ain)

 x1
...
xn

 =
n∑

j=1

aijxi

• Produit matrice x matrice. Soit B une matrice de taille (n, p). La matrice
C = AB de taille (m, p) est donnée par

cij = (ai1, · · · , ain)

 b1j
...
bnj

 =
n∑

k=1

aikbkj

• Transposition d’un produit. On a (AB)⊤ = B⊤A⊤.
4

Notations et rappels d’algèbre linéaire

• Système linéaire et inéquations linéaires. Soit b ∈ Rm. On a

Ax = b ⇐⇒


a11x1 + · · ·+ a1nxn = b1

...
...

...
am1x1 + · · ·+ amnxn = bm

(1)

Un vecteur x ∈ Rn vérifiant (1) est dit solution du système linéaire.

On écrira l’inéquation vectorielle

Ax ≤ b (2)

si et seulement si (Ax)i ≤ bi pour tout i .

• Matrice inversible. Soit A une matrice carrée de taille (n, n).
A est dite inversible s’il existe une matrice notée A−1 telle que
AA−1 = A−1A = In où In désigne la matrice identité (des 1 sur la
diagonale, 0 partout ailleurs).

A est inversible ⇔ les colonnes de A sont linéairement
indépendantes

⇔ le système linéaire Ax = b admet une unique
solution x donnée par x = A−1b. 5

Notations et rappels d’algèbre linéaire

• Produit par blocs. Soit A de taille (m, n). On décompose en blocs
horizontaux la matrice

A = (A1 A2)

où A1 est de taille (m, n1) et A2 de taille (m, n2) (même nombre de lignes
que A) avec n = n1 + n2. On a

Ax = A1x1 + A2x2 (3)

pour x =

(
x1
x2

)
∈ Rn et x1 ∈ Rn1 , x2 ∈ Rn2 .

6

Introduction

I) Introduction

Soient deux vecteurs b = (b1, · · · , bm)⊤ ∈ Rm, c = (c1, · · · , cn)⊤ ∈ Rn et
une matrice rectangulaire A de taille (m, n).

On considère le problème de programmation linéaire suivant (encore appelé
programme linéaire et en abrégé PL) :

max
x∈Rn

F (x) = c⊤x = c1x1 + · · ·+ cnxn

sous les contraintes{
Ax ≤ b
x ≥ 0

Contraintes inégalités Ax ≤ b : PL sous forme canonique pure.

Contraintes égalités Ax = b : PL est sous forme standard.

7

Introduction

Proposition
Tout PL sous forme standard s’écrit de façon équivalent en un PL sous
forme canonique pure et inversement.

1 Soit un PL sous forme canonique pure, montrons qu’il peut s’écrire en
un PL sous forme standard. On a

Ax ≤ b ⇔ Ax + e = b, e ≥ 0

où e = (e1, · · · , em)⊤ ∈ Rm sont appelées les variables d’écart. Ainsi,{
Ax ≤ b
x ≥ 0

⇔
{

Ãx̃ = b
x̃ ≥ 0

avec la matrice Ã = (A | Im) de taille (m, n +m), Im désignant la

matrice identité d’ordre m et x̃ =

(
x
e

)
∈ Rn+m.

2 Pour la réciproque, il suffit d’écrire l’égalité (dans les contraintes du
problème sous forme standard) comme 2 inégalités ≤ et ≥.

8

Introduction

Exemple. On considère le PL du problème de production donné dans
l’Introduction générale. Sous forme canonique pure, il s’écrit

max
(x1,x2)

[F (x1, x2) = 6x1 + 4x2] .
3x1 + 9x2 ≤ 81
4x1 + 5x2 ≤ 55
2x1 + x2 ≤ 20
x1, x2 ≥ 0

(4)

Ecrivons-le sous forme standard en introduisant 3 variables d’écarts e1, e2
et e3 :

max
(x1,x2,e1,e2,e3)

[F (x1, x2, e1, e2, e3) = 6x1 + 4x2] .
3x1 + 9x2 + e1 = 81
4x1 + 5x2 + e2 = 55
2x1 + x2 + e3 = 20
x1, x2, e1, e2, e3 ≥ 0

(5)

9

Introduction

Remarque. La positivité des variables assure l’équivalence des deux formes.
En fait, on peut toujours se ramener au cas de variables positives x ≥ 0 :

Si une variable xi a une borne inférieure l ≤ xi , on introduit une
nouvelle variable yi = xi − l ≥ 0.

S’il n’y a pas de borne inférieure sur xi , on pose xi = yi − zi avec deux
nouvelles variables yi ≥ 0, zi ≥ 0.

10

Méthode du simplexe

III) Méthode du simplexe (Dantzig 1947)

On considère un PL sous forme standard

max
x∈Rn

F (x) = c⊤x = c1x1 + · · · cnxn{
Ax = b
x ≥ 0

où A est une matrice de taille (m, n).
Hypothèse de rang plein 1 : On suppose que rang(A) = m ≤ n.
Sous cette hypothèse, le système Ax = b admet toujours des solutions 2.
L’hypothèse de rang plein n’est pas restrictive car si rang(A) < m le
système Ax = b n’a pas de solution en général.

1. Le rang de A est le nombre maximal de lignes de A linéairement indépendantes (=
nombre de colonnes de A linéairement indépendantes).
2. si m < n, le système Ax = b admet une infinité de solutions ; si m = n, la matrice A

est inversible (solution unique x = A−1b, il n’y a rien à maximiser).
11

Méthode du simplexe

1. Solution de base réalisable.
On note

DR = {x ∈ Rn, Ax = b, x ≥ 0} (6)

l’ensemble des solutions réalisables. L’ensemble DR est un polyèdre 3

convexe, fermé.

Définition d’une solution de base.
Soit B ⊂ {1, · · · , n} un ensemble d’indices avec card(B) = m tel que la
matrice carrée AB formée des colonnes Aj , j ∈ B , est inversible.

• On dit que l’ensemble B est une base et que
− les variables xB = (xj , j ∈ B) sont les variables de base.
− les variables xH = (xj , j /∈ B) sont les variables hors-base.

On notera H = {j ∈ {1, · · · , n}, j ̸∈ B} l’ensemble des indices
correspondants aux variables hors-base.

3. Un polyèdre Q de Rn est défini par Q = {x ∈ Rn, Mx ≤ b} où M est une matrice
de taille (m, n).

12

Méthode du simplexe

Solution de base (suite)

• On dit que x =

(
xB
xH

)
est une solution de base associée à la base B

si : • Ax = b
• xH = 0

Décomposition par blocs et expression des variables de base en fonction des
variables hors-base.

A une renumérotation près (une permutation) des colonnes de A, on peut
toujours écrire les décompositions par blocs :

A = (AB | AH) , x =

(
xB
xH

)
où AH est la matrice formée des colonnes Aj , j ∈ H.

13

Méthode du simplexe

Le système Ax = b est alors équivalent à

ABxB + AHxH = b.

et on obtient
Ax = b ⇔ xB = A−1

B (b − AHxH) (7)

On en déduit la caractérisation suivante des solutions de base.

Caractérisation des solutions de base.

Une solution de base x =

(
xB
xH

)
est caractérisée par

xB = A−1
B b, xH = 0 (8)

Une solution de base x est réalisable si x ∈ DR . Autrement dit :

Solution de base réalisable

Une solution de base x est dite réalisable si xB ≥ 0 (avec xB = A−1
B b).

14

Méthode du simplexe

2. Caractérisation de l’optimum.

• Un exemple. On considère le PL suivant (problème de production)

max
(x1,x2)

[F (x1, x2) = 6x1 + 4x2] .

sous les contraintes :
3x1 + 9x2 ≤ 81
4x1 + 5x2 ≤ 55
2x1 + x2 ≤ 20
x1, x2 ≥ 0

(9)

On peut résoudre graphiquement ce PL en dessinant tout d’abord
l’ensemble DR des solutions réalisables puis en faisant varier la constante C
de la droite d’équation F (x1, x2) = C . Partant d’une grandeur valeur
positive, on diminue C jusqu’à ce que la droite vienne "toucher" l’ensemble
DR . La solution optimale est atteint en un sommet x∗ = (7.5, 5)⊤.

15

Méthode du simplexe

0 2 4 6 8 10 12 14
x1

0

2

4

6

8

10

12

14

x 2

R

3x1 + 9x2 = 81

4x1 +5x2 =55
2x

1 +
x

2 =
20

F(x1 , x2) =
C

solution optimale x *

☛ La solution optimale est atteinte en un sommet du polyèdre.
16

Méthode du simplexe

Le problème (9) s’écrit sous forme standard (variables d’écart e1,e2,e3) :

max
x

[
F (x) = c⊤x

]
.{

Ax = b
x ≥ 0

(10)

avec

x =


x1
x2
e1
e2
e3

 , c =


6
4
0
0
0

 , A =

3 9 1 0 0
4 5 0 1 0
2 1 0 0 1

 , b =

81
55
20

 .

On a rang(A) = 3 et il y a 5 solutions de base réalisables x =

(
xB
xH

)
.

17

Méthode du simplexe

Par exemple :

Base B = {3, 4, 5} avec AB =

1 0 0
0 1 0
0 0 1

 ; solution de base

réalisable xB =

e1
e2
e3

 =

81
55
20

, xH =

(
x1
x2

)
=

(
0
0

)
.

Base B = {1, 2, 3} avec AB =

3 9 1
4 5 0
2 1 0

 ; solution de base

réalisable xB =

x1
x2
e1

 avec xB = A−1
B b, xH =

(
e2
e3

)
=

(
0
0

)
.

18

Méthode du simplexe

Caractérisation de l’optimum.

• Sommet d’un polyèdre. Un point x ∈ DR est un sommet s’il n’existe
pas de points y, z ∈ DR , y ̸= z tels que x = λy + (1 − λ)z avec 0 < λ < 1.

Théorème
1 x est une solution de base réalisable si et seulement si x est un

sommet de DR .
2 Le maximum de la fonction objectif F sur DR , s’il existe, est atteint

en au moins un sommet de DR .

Il suffit donc de se restreindre aux solutions de base réalisables. Au plus Cm
n

solutions de base réalisables (toutes ne sont pas réalisables) avec un coût
de O(m3) opérations pour déterminer la solution du système ABxB = b
(méthode directe de type Gauss/factorisation LU).

⇒ nombre d’opérations d’ordre O(m3Cm
n), ce qui devient vite énorme :

pas d’exploration exhaustive possible des solutions.

Avec la méthode du simplexe, on va explorer seulement les sommets qui
permettent d’augmenter F et on évitera ainsi d’explorer tous les sommets.19

Méthode du simplexe

Algorithme du simplexe.
On suppose qu’on dispose d’une solution de base réalisable x associée à une
base B . On veut trouver une autre base B∗ et x∗ solution de base réalisable
"voisine" telle que x∗ est meilleure que x, au sens où :

F (x∗) > F (x) (11)

Principe de la méthode du simplexe : faire rentrer une variable
hors-base dans la nouvelle base (variable entrante) et faire sortir à la place
une variable de base (variable sortante).

•Variable entrante. On exprime F en fonction des variables hors-base.

Proposition (Coûts réduits)

Pour tout x ∈ DR = {x ∈ Rn, Ax = b, x ≥ 0}, on a

F (x) = F (x) + L⊤HxH avec L⊤H = c⊤H − c⊤BA
−1
B AH . (12)

LH est le vecteur des coûts réduits.

20

Méthode du simplexe

Choix de la variable entrante
La variable entrante xe est la variable hors-base (une composante de xH)
qui a le coût réduit (coefficient de LH) positif le plus grand possible.

Si les coûts réduits sont tous négatifs (LH ≤ 0), la méthode du simplexe
s’arrête (fin normale) : la solution de base réalisable x est optimale.

•Variable sortante. On maintient la relation Ax = b avec x ≥ 0.

Ax = b ⇔ ABxB + Aexe = b où Ae est la e-ième colonne de A

⇔ xB = A−1
B (b − Aexe)

⇔ xB = xB − A−1
B Aexe

⇔ xB = xB − zxe avec z = A−1
B Ae ∈ Rm.

Choix de la variable sortante
On doit avoir xB = xB − zxe ≥ 0. La variable sortante xs est celle qui
s’annule la première lorsque xe augmente.

21

Méthode du simplexe

Si z ≤ 0 (i.e. toutes les composantes de z sont négatives) alors on a xB ≥ 0
quelque soit xe > 0. La fonction F n’est donc pas bornée (maxF = +∞) :
arrêt de la méthode du simplexe.

Algorithme général.
1 Calcul des variables de base réalisables. Etant donné

A = (AB |AH), on calcule xB = A−1
B b ≥ 0.

2 Calcul des coûts réduits L⊤H = c⊤H − c⊤BA
−1
B AH. Si LH ≤ 0

alors xB est optimale → arrêt.
3 Détermination de la variable entrante xe.
4 Détermination de la variable sortante xs (arrêt possible

si z ≤ 0 : fonction objectif non majorée).
5 Nouvelle base B∗ et matrice AB∗ obtenue en remplaçant la

colonne As par Ae. Calcul de A−1
B∗ et retour en 1.

22

Méthode du simplexe

Plusieurs méthodes de mise en œuvre de la méthode du simplexe qui
diffèrent par la façon d’effectuer les différents calculs (solution de base
réalisable xB , coûts réduits LH , etc.) : méthode des dictionnaires, méthodes
des tableaux, simplexe révisé.

Méthode des dictionnaires
On exprime les variables de base xB ainsi que F en fonction des
variables hors-base xH . On obtient un système linéaire qu’on appelle
dictionnaire.
On choisit la variable entrante xe comme la composante de xH qui fait
le plus augmenter F (coefficient du coût réduit LH le plus grand).
On détermine la variable sortante xs en maintenant les conditions de
positivité sur les variables de base xB ≥ 0 quand on augmente xe ↗ à
partir de 0.

23

Méthode du simplexe

Exemple du problème de production (9).

Solution de base réalisable initiale :
x1 = 0, x2 = 0, e1 = 81, e2 = 55, e3 = 20 avec F = 0.

Convergence de la méthode des dictionnaires en 3 étapes. A la dernière
étape, on obtient le dictionnaire :

x2 = 5 − 1
3e2 +

2
3e3

x1 = 15
2 + 1

6e2 −
5
6e3

e1 = 27
2 + 5

2e2 −
7
2e3

F = 65−1
3e2−

7
3e3

Coûts réduits L⊤H =
(
−1

3 ,−
7
3

)
< 0 ⇒ l’optimum est atteint et la solution

optimale est

x∗1 =
15
2
, x∗2 = 5, e∗1 =

27
2
, e∗2 = 0, e∗3 = 0 avec maxF = 65.

24

Dualité Introduction et définitions

IV) Dualité

1) Introduction et définitions
L’exemple du problème de production (cf Introduction générale). On
suppose qu’un acheteur se présente pour acheter toutes les ressources de
l’entreprise. Il propose les prix unitaires y1, y2 et y3 pour chacune des 3
ressources (équipement, énergie, matière première). On suppose que :

l’entreprise acceptera de lui vendre toutes ses ressources si elle obtient
pour chaque produit P1 et P2 un bénéfice plus grand que les prix
unitaires de vente.
l’acheteur veut minimiser ses dépenses.

Quels prix y1, y2 et y3 doit-il proposer ?
Le problème se modélise par le problème dual :

min
(y1,y2,y3)

[G (y1, y2, y3) = 81y1 + 55y2 + 20y3] .
3y1 + 4y2 + 2y3 ≥ 6
9y1 + 5y2 + y3 ≥ 4
y1, y2, y3 ≥ 0

(13)

25

Dualité Introduction et définitions

Définitions
Au programme linéaire primal

(PL)

max
x∈Rn

[
F (x) = c⊤x

]
{

Ax ≤ b
x ≥ 0

où A est une matrice de taille m× n, on associe le programme linéaire dual

(PLD)

min
y∈Rm

[
G (y) = b⊤y

]
{

A⊤y ≥ c
y ≥ 0

26

Dualité Introduction et définitions

La notion de dualité peut s’introduire avec le Lagrangien

L(x, y) = c⊤x + (b − Ax)⊤y (14)

associé au PL sous forme standard (contraintes Ax = b) qui peut s’écrire

(primal) : max
x

{
min

y
L(x, y), x ≥ 0

}
. (15)

On obtient le problème dual en échangeant le max et le min :

(dual) : min
y

{
max

x
(L(x, y), x ≥ 0)

}
. (16)

27

Dualité Introduction et définitions

De façon générale, on a la définition suivante lorsque le problème primal est
sous forme canonique mixte :

Primal Dual

max
x∈Rn

[
F (x) = c⊤x

]
min
y∈Rm

[
G (y) = b⊤y

]
∀i ∈ I1,

n∑
j=1

aijxj ≤ bi ∀i ∈ I1, yi ≥ 0

∀i ∈ I2,
n∑

j=1

aijxj = bi ∀i ∈ I2, yi de signe quelconque

∀j ∈ J1, xj ≥ 0 ∀j ∈ J1,

m∑
i=1

aijyi ≥ cj

∀j ∈ J2, xj de signe quelconque ∀j ∈ J2,

m∑
i=1

aijyi = cj

avec I1 ∪ I2 = {1, · · · ,m}, I1 ∩ I2 = ∅ et J1 ∪ J2 = {1, · · · , n}, J1 ∩ J2 = ∅.
28

Dualité Introduction et définitions

Cas particuliers primal/dual

Proposition
On a les correspondances suivantes entre problème primal et dual :

Primal Dual

(PL1)

max
x∈Rn

[
F (x) = c⊤x

]
{

Ax = b
x ≥ 0

(PLD1)

min
y∈Rm

[
G (y) = b⊤y

]
{

A⊤y ≥ c
y de signes quelconques

(PL2)

max
x∈Rn

[
F (x) = c⊤x

]
{

Ax = b
x de signes quelconques

(PLD2)

min
y∈Rm

[
G (y) = b⊤y

]
{

A⊤y = c
y de signes quelconques

29

Dualité Théorèmes de dualité

2) Théorèmes de dualité

Remarquons tout d’abord le résultat suivant :

Proposition
Le dual du dual est le primal

On s’intéresse à présent au lien entre les solutions de programmes linéaires
en dualité.

Théorème faible de dualité
Soit x une solution réalisable d’un (PL) sous forme canonique (pure ou
mixte) et y une solution réalisable du problème dual (PLD) associé.
Alors :

1 F (x) ≤ G (y)
2 Si F (x) = G (y) alors x et y sont des solutions optimales de (PL) et

(PLD) respectivement.

30

Dualité Théorèmes de dualité

Démonstration de la dualité faible (cas d’un PL sous forme canonique
pure).

1 On a d’une part Ax ≤ b, x ≥ 0 et d’autre part A⊤y ≥ c, y ≥ 0. Par
conséquent,

F (x) = c⊤x ≤ (A⊤y)
⊤
x = y⊤ Ax︸︷︷︸

≤b

≤ y⊤b = G (y) car y ≥ 0

2 Soient x∗ et y∗ des solutions réalisables de (PL) et (PLD)
respectivement telles que F (x∗) = G (y∗). D’après 1., pour toute
solution réalisable x de (PL), on a F (x) ≤ G (y∗) = F (x∗) donc x∗ est
une solution réalisable optimale qui réalise le maximum de F . Idem
pour y∗. □

Théorème fort de dualité

Si le problème primal (PL) admet une solution réalisable optimale x∗ alors
le problème dual (PLD) associé admet lui aussi une solution réalisable
optimale y∗ et on a

F (x∗) = G (y∗).
31

Dualité Théorèmes de dualité

Idée de la preuve. On suppose (PL) mis sous forme standard.
S’il existe une solution réalisable optimale, alors il existe une solution de
base réalisable optimale xB∗ = A−1

B∗b.
On choisit alors

y∗ = (A−1
B∗)

⊤cB∗ .

On montre que y∗ est une solution réalisable optimale pour le dual (PLD).

32

Dualité Théorèmes de dualité

Il y a 3 cas possibles (et seulement 3) pour le problème primal (PL) :
(1) il existe (au moins) une solution optimale.
(2) l’ensemble DR des solutions réalisables n’est pas borné et l’optimum

est infini.
(3) pas de solution réalisable (DR = ∅).

Les mêmes situations se retrouvent pour le problème dual.

Théorème
Etant donnés un problème primal (PL) et son dual (PLD), une et une seule
des trois situations suivantes peut se produire.
(a) les deux problèmes possèdent chacun des solutions optimales (à

l’optimum, les coûts sont égaux).
(b) un des problèmes possède une solution réalisable avec un optimum

infini, l’autre n’a pas de solution.
(c) aucun des deux problèmes ne possède de solution réalisable.

33

Dualité Théorèmes de dualité

Remarque. Si l’un des problèmes possède une solution réalisable et l’autre n’a
pas de solution réalisable alors le premier a un coût non-borné (optimum infini).
Ainsi la condition d’optimum infini dans (b) n’est pas nécessaire. En effet, si (PL)
admet une solution réalisable avec un optimum fini alors d’après (a) le dual
(PLD) a aussi une solution réalisable.

En résumé. Il y a donc 3 situations (au lieu de 9) :

Dual
(1) solution

optimale
(2) optimum

infini
(3) non-réalisable

P
rim

al (1) solution (a) impossible impossible
optimale

(2) optimum impossible impossible (b)
infini

(3) non-réalisable impossible (b) (c)

34

Dualité Théorème des écarts complémentaires

3) Théorème des écarts complémentaires.
Cas (a) : le primal et le dual possèdent chacun des solutions optimales
(optimum fini).
☛ On peut alors calculer l’une à partir de l’autre.

Théorème des écarts complémentaires (TEC)

Soient x et y des solutions réalisables respectivement du problème primal
(PL) sous forme canonique mixte et du problème dual (PLD). Alors x et y
sont des solutions réalisables optimales si et seulement si

• ∀i ∈ I1,
n∑

j=1

aijxj = bi ou yi = 0 (17)

• ∀j ∈ J1,

m∑
i=1

aijyi = cj ou xj = 0 (18)

35

Dualité Théorème des écarts complémentaires

On peut interpréter ce résultat de la façon suivante :
Si une contrainte est satisfaite en tant qu’inégalité stricte dans (PL)
(resp. dans (PLD)) alors la variable correspondante de (PLD) (resp.
de (PL)) est nulle.
Si la valeur d’une variable dans (PL) ou (PLD) est
strictement positive alors la contrainte correspondante de l’autre
programme est une égalité.

Démonstration de la condition nécessaire (cas d’un PL sous forme
canonique pure). Soient x et y des solutions réalisables optimales de (PL)
et (PLD) respectivement. On a donc Ax ≤ b, x ≥ 0 et A⊤y ≥ c, y ≥ 0. En
introduisant les variables d’écart e et ε respectivement pour (PL) et
(PLD), on a

Ax + e = b
x ≥ 0, e ≥ 0

et
A⊤y − ε = c
y ≥ 0, ε ≥ 0

36

Dualité Théorème des écarts complémentaires

Dans ces conditions,

F (x) = c⊤x = (A⊤y − ε)⊤x = y⊤Ax − ε⊤x
G (y) = b⊤y = (Ax + e)⊤y = (Ax)⊤y + e⊤y = y⊤Ax + e⊤y.

Or d’après le Théorème de la dualité forte, F (x) = G (y) donc on obtient

ε⊤x + e⊤y = 0. (19)

Puisque x ≥ 0 et y ≥ 0, on a nécessairement{
εixi = 0, ∀i
ejyj = 0, ∀j

On obtient ainsi les relations, parfois appelées relations d’exclusion :{
Si εi ̸= 0 alors xi = 0
Si xi ̸= 0 alors εi = 0,

{
Si ej ̸= 0 alors yj = 0
Si yj ̸= 0 alors ej = 0.

La réciproque (condition suffisante) se démontre à partir du Théorème
faible de dualité. □

37

Dualité Théorème des écarts complémentaires

Utilisation pratique du TEC.

La dualité et le TEC permettent souvent de vérifier si une solution
réalisable x d’un (PL) est optimale ou non :

on vérifie que x est une solution réalisable de (PL).
si on peut, on détermine y par le TEC si on obtient suffisamment
d’équations pour y.
on vérifie que y est une solution réalisable du dual (PLD) ou pas en
testant les contraintes non utilisées par le TEC.

Lorsque (PL) et (PLD) ont des solutions réalisables optimales x∗ et y∗

respectivement, on a :

•
n∑

j=1

aijx
∗
j < bi ⇒ y∗i = 0

•
m∑
i=1

aijy
∗
i > cj ⇒ x∗j = 0

38

Dualité Théorème des écarts complémentaires

et

• y∗i > 0 ⇒
n∑

j=1

aijx
∗
j = bi

• x∗j > 0 ⇒
m∑
i=1

aijy
∗
i = cj

Exemples. 1) Problème dual du problème de production

min
y

[G (y) = 81y1 + 55y2 + 20y3]
3y1 + 4y2 + 2y3 ≥ 6
9y1 + 5y2 + 1y3 ≥ 4
y1, y2, y3 ≥ 0

On veut vérifier que la solution
x = (x1, x2, e1, e2, e3)

⊤ = (15/2, 5, 27/2, 0, 0)⊤

du primal (PL) est optimale. La solution x est bien réalisable.

39

Dualité Théorème des écarts complémentaires

Le TEC donne :

e1 = 27/2 > 0 TEC
=⇒ y1 = 0

x1 = 15/2 > 0 TEC
=⇒ 3y1 + 4y2 + 2y3 = 6 (ε1 = 0)

x2 = 5 > 0 TEC
=⇒ 9y1 + 5y2 + y3 = 4 (ε2 = 0)

e2 = e3 = 0

En résolvant le système pour y, on obtient la solution optimale du problème
dual :

y1 = 0, y2 = 1/3, y3 = 7/3.

On vérifie que y est bien réalisable pour (PLD) donc x est optimale (et y
aussi).

2) Exercice : soit le PL
max

x
[F (x) = 2x1 − x2 + x3]

x1 + x2 ≤ 5
x2 − x3 ≥ 1
x1 + x3 = 3
x1, x2, x3 ≥ 0

On veut savoir si x = (3, 1, 0)⊤

est une solution optimale.

40

Dualité Théorème des écarts complémentaires

On veut savoir si x = (3, 1, 0)⊤ est une solution optimale. La solution x est
bien réalisable. Sous forme standard, le problème s’écrit

max
x

[F (x) = 2x1 − x2 + x3]
x1 + x2 + e1 = 5
x2 − x3 − e2 = 1
x1 + x3 = 3
x1, x2, x3, e1, e2 ≥ 0

Le dual (PLD) s’écrit

min
y

[G (y) = 5y1 + y2 + 3y3]
y1 + y3 ≥ 2
y1 + y2 ≥ −1
−y2 + y3 ≥ 1
y1 ≥ 0, y2 ≤ 0, y3 de signe quelconque

La solution (réalisable) de PL sous forme standard est
x = (x1, x2, x3, e1, e2)

⊤ = (3, 1, 0, 1, 0)⊤
41

Dualité Théorème des écarts complémentaires

Le TEC donne 
2 − (y1 + y3) = 0
−1 − (y1 + y3) = 0
y1 = 0

⇔


y1 = 0
y2 = −1
y3 = 2

On vérifie que y est bien une solution réalisable du dual (PLD) et donc que
x est optimale (et y aussi).

42

Dualité Méthodes primal-dual

4) Méthodes primal-dual.
Les conditions d’optimalité d’un problème primal sous forme standard
conduisent - grâce au TEC - au problème suivant :

(PD)


Ax = b
A⊤y − ε = c
ε⊤x = 0
x ≥ 0, ε ≥ 0,
y de signes qcq

dont les inconnues sont (x, y, ε).
On peut résoudre directement (PD) pour déterminer les solutions optimales
x∗ (primale) et y∗ (duale) : on parle alors de méthodes primal-dual.
Le problème (PD) est non-linéaire à cause de la présence du produit ε⊤x.
On peut utiliser une méthode de descente sur les variables duales prenant
en compte la positivité ou bien des méthodes intérieures (avec Newton
modifiée pour la positivité)

43

Quelques solveurs de PL

IV) Quelques solveurs de PL

La plupart des solveurs résolvent des problèmes de programmation linéaire
avec des variables entières/réelles : Mixed Integer Linear Programming
(MIP ou MILP).
Certains résolvent aussi les problèmes avec une fonction objectif
quadratique (QP, Quadratic Programming) même non-linéaire, des
contraintes quadratiques (QCP, Quadratically Constrained Programming)
et tous les mélanges possibles : MIQP, MIQCP, . . .

Gurobi (depuis 2008). Code commercial, licence gratuite bridée
(limitation de la taille des problèmes), licence éducation gratuite. C’est
«le» solveur actuel (en 2026).
CPLEX (IBM). Code commercial, licence éducation gratuite. Une
référence aussi («la» référence ... avant Gurobi).
SCIP, solveur universitaire non-commercial très prometteur...,
développé au Zuse Institute Berlin (ZIB).
HiGHS (high performance software for linear optimization), un solveur
LP/MIP/QP aussi prometteur et opensource. 44

Quelques solveurs de PL

COIN-OR (COmputational INfrastructure for Operations Research)
Optimization Suite, une suite de logiciels OpenSource. En particulier,
il contient :

· Clp (Coin-or linear programming), un solveur PL.
· CBC (Coin-or branch and cut), un solveur MILP.

GLPK (GNU Linear Programming Kit). Code OpenSource, pour
résoudre des problèmes de petite taille car très vite «poussif» quand
les problèmes deviennent gros. Solveur PL/MILP.
LPSOLVE. Code OpenSource PL/MILP.
AMPL (A Mathematical Programming Language). C’est un langage
de modélisation algébrique (décrire formellement un problème en vue
de sa résolution numérique) qui ne résout pas directement les
problèmes mais prend en charge des dizaines de solveurs (CBC,
CPLEX, Gurobi ... et aussi des solveurs nonlinéaires).

45

Quelques solveurs de PL

et aussi ...

MATLAB : fonctions linprog pour les PL et intlinprog pour les
MILP ; interfaces pour Gurobi, CPLEX, CBC, Clp, GLPK.
EXCEL intègre un solveur LP.
Interfaces Python pour Gurobi, SCIP, GLPK : pulp, pyomo..
HEXALY (depuis 2012), annonce concurrencer Gurobi pour des
problèmes classiques

Formats de données standards.

Tous ces solveurs utilisent les formats de données les plus standards MPS
et LP. Pour une description complète de ces formats (et d’autres !), vous
pourrez consulter :
https://docs.gurobi.com/projects/optimizer/en/current/reference/

fileformats.html

46

https://docs.gurobi.com/projects/optimizer/en/current/reference/fileformats.html
https://docs.gurobi.com/projects/optimizer/en/current/reference/fileformats.html

Quelques solveurs de PL

Exemples d’utilisation de solveurs. On considère le PL suivant.

(1)

maxF (x) = 1700x1 + 3200x2
3x2 ≤ 39
1.5x1 + 4x2 ≤ 60
2x1 + 3x2 ≤ 57
3x1 ≤ 57
x1, x2 ≥ 0

1 Format de données LP ; écrire dans le fichier exo1.lp :
maximize

F : 1700 x1 + 3200 x2
subject to

M1 : 3 x2 <= 39
M2 : 1.5 x1 + 4 x2 <= 60
M3 : 2 x1 + 3 x2 <= 57
M4 : 3 x1 <= 57

end

47

Quelques solveurs de PL

Par défaut, les variables sont réelles (continues) et positives.

Si les variables sont entières, il faut ajouter :
int

x1 x2
ou bien si elles sont binaires :
binary

x1 x2
Si les variables sont bornées (inf. et/ou sup.), il faut rajouter (par ex.) :
bounds

1 <= x1 <=15
2 <= x2

(a) Exécution directe de GUROBI.

La commande d’exécution (dans un terminal linux ou dans l’invite de
commandes windows) s’écrit :

gurobi_cl ResultFile=exo1.sol exo1.lp

48

Quelques solveurs de PL

Le fichier de résultat exo1.sol contient alors la solution optimale :

Solution for model F
Objective value = 5.4857142857142855e+04
x1 1.3714285714285714e+01
x2 9.8571428571428577e+00

Remarque. Sous Linux/MacOs, il y a aussi la possibilité d’exécuter
GUROBI directement en ligne de commande (dans un terminal) : lancer
simplement gurobi.cl pour ouvrir l’environnement Gurobi Interactive
Shell (prompt "gurobi>").
Vous pouvez alors utiliser les commandes disponibles :
gurobi> m=read("exo1.lp")
gurobi> m.optimize()

(help() pour obtenir les différentes commandes).

49

Quelques solveurs de PL

(b) Utilisation de Gurobi à partir de python : gurobipy

Le solveur Gurobi est utilisé via un module python appelé gurobipy.

Un PL est défini directement à partir de tableaux numpy et aussi de
matrices creuses (plusieurs types définis dans scipy.sparse) 4.

Voici un script possible pour résoudre le problème (1) (LIRE les
commentaires !) :

La documentation complète est disponible ici
https://docs.gurobi.com/projects/optimizer/en/current/
reference/python.html

4. C’est un des rares solveurs à proposer ces fonctionnalités qui évitent de perdre du
temps à définir le modèle en rentrant les contraintes une par une (lorsqu’il y a beaucoup
de contraintes, cela peut prendre du temps quand on utilise un langage interprété
comme python).

50

https://docs.gurobi.com/projects/optimizer/en/current/reference/python.html
https://docs.gurobi.com/projects/optimizer/en/current/reference/python.html

Quelques solveurs de PL

import numpy as np
import gurobipy as gp

on définit le vecteur c de la fct objectif
c = np.array([1700, 3200])

on définit la matrice A et le vecteur b des contraintes
d’inégalité
A = np.array([[0, 3],

[1.5, 4],
[2, 3],
[3, 0]])

b = np.array([39, 60, 57, 57])

On définit maintenant le modèle pour gurobi.
1/ Il faut d’abord instancier un objet de type ‘‘Modèle Gurobi’’
m = gp.Model()

2/ On définit les variables du modèle (le type est ‘‘MVar Gurobi’’),
il faut donner le nombre de variables (i.e. autant de variables qu’il
y a d’éléments dans c). Pas mal de réglages possibles (type des
variables, bornes inf et/ou sup, donner un nom, etc.). Par défaut,
les variables sont continues et bornées inférieurement par 0.
x = m.addMVar(len(c)) 51

Quelques solveurs de PL

3/ On définit la fonction objectif, exactement comme on ferait pour
définir le produit scalaire entre deux vecteurs numpy, c’est à dire
avec l’opérateur @ (attention cependant si c est bien un tableau
numpy, x joue le rôle d’une sorte de variable formelle). Dans notre
cas il faut préciser qu’on veut maximiser (le défaut est de minimiser)
GRB est un sous-module de gurobipy définissant toutes les constantes.
m.setObjective(c @ x, gp.GRB.MAXIMIZE)

4/ Les contraintes se définissent aussi naturellement que la fonction
objectif, c’est à dire avec l’opérateur @ (bien sûr pour des contraintes
d’égalité il faudrait utiliser A @ x == b et on pourrait aussi utiliser
A @ x >= b), on peut aussi ajouter autant de contraintes que l’on veut.
m.addConstr(A @ x <= b)

5/ reste plus qu’à résoudre, ce qui s’obtient avec :
m.optimize()

52

Quelques solveurs de PL

6/ après optimisation, on peut :

6-a/ obtenir le statut avec :
m.Status

qui retourne 2 pour OPTIMAL, 3 pour INFEASIBLE, 4 pour INF_OR_UNBD
et 5 pour UNBOUNDED mais d’autres possibilités existent comme 1 pour
LOADED (le modèle n’a pas encore été optimisé) ou encore comme 9 pour
TIME_LIMIT (il est possible de définir un temps max à ne pas dépasser).

6-b/ obtenir la solution (si le statut est OPTIMAL) sous forme de liste
avec :
x_opt = m.X
ou encore np.array(m.X) pour l’avoir sous forme de tableau numpy

6-c/ la valeur de la fonction objectif avec
f_opt = m.ObjVal

53

Quelques solveurs de PL

Remarques et compléments.
Sur les options de la méthode addMVar(nb_vars).

L’argument imposé est le nombre de variables. Par défaut, les variables
sont continues et inférieurement bornées par 0. Il existe (entre autres)
les arguments optionnels suivants :

• lb=, ub= bornes inférieures et supérieures ;
• vtype= type des variables : ’C’, ’I’, ’B’.

Pour chaque argument, vous pouvez vous contenter d’un scalaire qui
sera valable pour toutes les composantes, sinon il faut un itérable
comme une liste. Pour le problème précédent, on aurait pu utiliser :
A = np.array([[1.5, 4], [2, 3]])
b = np.array([60, 57])
instantiation du modèle
m = gp.Model()
on donne les bornes sup lors de la définition des variables
x = m.addMVar(len(c), ub=[19,13])

54

Quelques solveurs de PL

Si vous avez certaines variables bornées supérieurement et pas
d’autres, vous pouvez utiliser le nombre flottant spécial Inf , qui
s’obtient via np.inf ou encore float(’inf’), ainsi pour 3 variables
avec la première majorée par 2 et les 2 suivantes non majorées, on
utilisera

ub=[2, np.inf, np.inf]

Lors de l’ajout de contraintes avec la méthode addConstr, si le
second membre est constant (vecteur de 0, de 1, etc.), vous pouvez
utiliser un scalaire, par exemple Ax ≥ 0 peut s’écrire :

m.addConstr(A @ x >= 0)

Les variables gurobi peuvent être manipulées comme des tableaux
numpy, on peut donc désigner une partie des variables à l’aide d’une
liste d’indices ou de tranches.

55

Quelques solveurs de PL

Exemples :
n = 40
m = gp.Model() # un modèle gurobi
X = m.addMVar(n) # un ‘‘vecteur’’ (de variables gurobi)

à n composantes
X[::2] # toutes les composantes paires
X[1::2] # toutes les composantes impaires
X[:10] # les 10 premières composantes
X[-10:] # les 10 dernières composantes
X[[1,5,7]] # les composantes d’indices 1, 5 et 7

Ces possibilités peuvent être utilisées lorsqu’on définit la fonction
objectif et les contraintes.
Exemples.

si la fonction objectif ne dépend que des m dernières variables, on
pourra utiliser :

modele est un modèle gurobi
c un ndarray 1d de profil (m,)
(coefs s’appliquant aux m dernières variables)
modele.setObjective(c @ X[-m:], gp.GRB.MINIMIZE)

56

Quelques solveurs de PL

Si les p contraintes Ax <= b ne dépendent que des m premières
variables, on pourra se contenter de former un tableau A de profil
(p,m) (au lieu d’un profil (p, n)) et écrire alors :

modele est un modèle gurobi
A un ndarray 2d de profil (p,m)
b un ndarray 1d de profil (p,)
modele.addConstr(A @ X[:m] <= b)

Le solveur peut travailler sur le problème dual. Ainsi dans certains cas,
il ne peut pas savoir si le primal est non borné ou infaisable (domaine
DR = ∅) d’où parfois la réponse 4 (INF_OR_UNBD) concernant le
statut de l’optimisation. Si on veut savoir de quoi il en retourne, il est
possible de refaire une optimisation du modèle en précisant :

m = gp.Model()
pour savoir si notre problème est infaisable ou non borné:
m.Params.DualReductions = 0

57

Quelques solveurs de PL

Il est possible et fortement conseillé pour les gros problèmes d’utiliser
des matrices creuses pour définir la ou les matrices des contraintes.
Seuls les coefficients non-nuls des matrices sont stockés. Il existe
plusieurs formats creux plus ou moins efficaces en fonction des
opérations à effectuer sur ces matrices (insertion/suppression
d’éléments, multiplications,...)
Alternative aux formulations matricielles : quicksum
Plutôt que d’écrire l’objectif et les contraintes sous la forme c⊤x et
Ax = 0, on peut utiliser la fonction gurobi quicksum qui permet de
manipuler directement les variables dans des sommes. On peut
également définir des variables indicées dans un dictionnaire python où
les clés sont les indices.

Exemple. Variables binaires xij avec i ∈ J1, nK, j ∈ J1,mK vérifiant les
contraintes

m∑
j=1

xij = 1, ∀i ∈ J1, nK

58

Quelques solveurs de PL

gurobipy est importé avec : import gurobipy as gp
model est un modèle gurobi

définition des variables binaires x[i,j]
x = {} # x est un dictionnaire
for i in range(n):

for j in range(m):
x[(i, j)]=model.addVar(vtype=gp.GRB.BINARY, name=f"x_{i}_{j}")

model.update() # mise à jour du modèle

contraintes
for i in range(n):

model.addConstr(gp.quicksum(x[(i, j)] for j in range(m)) == 1)

gurobi s’arrête lorsqu’il a détecté une solution optimale mais il peut
essayer de trouver l’ensemble des solutions pour un MIP :

recherche de n solutions
space.setParam("PoolSolutions", n)
space.setParam("PoolSearchMode", 2) # pour avoir les meilleures sol.

59

	Notations et rappels d'algèbre linéaire
	Introduction
	Méthode du simplexe
	Dualité
	Introduction et définitions
	Théorèmes de dualité
	Théorème des écarts complémentaires
	Méthodes primal-dual

	Quelques solveurs de PL

