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Introduction

1) Introduction

Deux types de problémes en programmation linéaire en nombres entiers
(PLNE) :
@ Pas besoin d'imposer le caractéere entier de la solution : il résulte
directement de la structure du probléeme (propriétés algébriques de la
matrice A des contraintes).

@ On doit imposer I'intégrité de la solution, faute de quoi la solution
optimale est non-entiére (réelle).

Exemple. Probleme de sac-a-dos (knapsack en anglais).

Un randonneur emporte dans son sac n objets dont le poids total ne doit
pas excédé P. Chaque objet i/ a un poids p; et posséde une utilité ;.
Quels objets le randonneur doit-il prendre pour maximiser |'utilité totale
sans dépasser le poids total P 7



Introduction

Modélisation.

1 sil'objet i est emporté

variables binaires x; = { 0 s
sinon

)r(g]% F(x Z CiX;
Zp,x, <P
x, 6 {0,1}
Si on remplace la condition x; € {0,1} par x; € [0, 1] (les x; réelles) alors

la solution optimale du probleme de sac-a-dos n'est pas entiere en général
(et donc non binaire).



Solutions optimales a valeurs entiéres

II) Solutions optimales a valeurs entiéres

Soit le PL sous forme standard
MaXycRn [F(x) = ch]
Ax=Db
x>0
ol A est une matrice de taille m x n a coefficients entiers. Le vecteur b

est aussi entier. En général la solution optimale de PL (quand elle existe)
n'est pas entiere.

On cherche des conditions sur la matrice A pour que la solution optimale
soit entiére.
Définition 1. Matrice totalement unimodulaire

Une matrice A de taille m x n est dite totalement unimodulaire (TUM) si
toute sous-matrice? carrée de A a un déterminant qui vaut 0, +1 ou —1.

“matrice obtenue en sélectionnant certaines lignes et colonnes de A.

Remarque. Toute matrice TUM est nécessairement composée de 0, +1
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Solutions optimales a valeurs entiéres

Théoreme 1.

Soit A une matrice TUM et b un vecteur entier. Si un PL sous forme
standard admet une solution optimale, il admet nécessairement une
solution optimale entiéere.

Remarque. Le résultat est encore vrai si le PL est sous forme canonique
pure (contrainte Ax < b).

Démonstration du Théoréeme 1. On suppose que le PL admet une solution
optimale. On sait alors qu'il existe une solution de base optimale

X7 _
x* — <XB> avec x5 = ABlb €R™ xj; =0c R""™ et avec la

*
H

décomposition (a une permutation prés des colonnes de A)
A= (Ag|An).

On utilise alors le Lemme suivant.



Solutions optimales a valeurs entiéres

Lemme 1.
Les 3 propositions suivantes sont équivalentes.
(1] det(AB) =41
@ Pour tout vecteur b entier, toute solution de base associée a Ag est
entiere.

© Pour toute matrice de base Ag, la matrice inverse Agl est entiere
(i.e. a coefficients entiers).

Pour la démonstration du Lemme 1 (1 = 2), utiliser la régle de Cramer*.

Si A est TUM alors on a det(Ag) = £1 car on ne peut avoir det(Ag) =0
(Ap est inversible). D'apres le Lemme 1, toute solution de base réalisable
est entiére donc la solution optimale x* est entiere, d'ou le Théoreme 1. [J

1Soit x5 la solution du systéme linéaire Agxg = b. On note xg,; la i-ieme
composante de xg. Si A(B') désigne la matrice obtenue en remplagant la j-ieme colonne
det(A))
det(Ag)

de Ag par le vecteur b, alors on a xg,; =



Solutions optimales a valeurs entiéres

Le Lemme 1 permet aussi d'obtenir le résultat suivant.

Soit A une matrice a coefficients entiers.
Aest TUM <& Pour tout vecteur b entier, le polyedre
Dr = {x | Ax < b, x > 0} est entier, c'est-a-dire
que Dg est I'enveloppe convexe des points entiers
contenus dans Dg.




Solutions optimales a valeurs entiéres

La propriété TUM est en fait une CNS pour avoir une solution entiére.

Théoreme 3. (réciproque du Théoréme 1)
Soit A une matrice a coefficients entiers.

Aest TUM <« le PL maxycgn (ch; Ax < b; x > 0) admet une so-
lution optimale entiére pour tout vecteur b entier pour
lequel la valeur optimale du PL est finie.

Il faut comprendre, "un PL admettant une solution optimale finie, possede
une solution optimale entiere ssi A est TUM.”



Solutions optimales a valeurs entiéres

Comment reconnaitre qu'une matrice est TUM ?

Théoreme 4. Hoffman-Gale
Soit A une matrice contenant seulement les éléments 0, +1 ou —1 et qui
satisfait les 2 conditions suivantes :

© Chaque colonne de A contient au plus 2 éléments non-nuls.

@ Les lignes de A peuvent étre partitionnées en 2 sous-ensembles /; et
> tels que pour chaque colonne contenant 2 éléments non-nuls :
@ si les 2 éléments non-nuls ont le méme signe alors |'un est dans /; et

I'autre dans b.
o si les 2 éléments non-nuls ont des signes contraires alors ils sont tous

les 2 dans /; ou tous les 2 dans 5.

Alors A est TUM.

10



Solutions optimales a valeurs entiéres

Exemple 1. Soient les matrices

} = {1,2}
}b={3.4}

} L =1{1,2,3}
b oh=1{4}

0
-1 0
0
1

D'apres le Théoreme 4, les matrices A et B sont TUM.

11



Solutions optimales a valeurs entiéres

Exemple 2. Dans les problémes d’affectation avec variables binaires on
rencontre souvent des contraintes de la forme

Zx,-j =1,Vi et Zx,-j =1,V
Jj i

que I'on peut écrire matriciellement par Ax = 1 avec

1 1 1

h

1 1 1

A= 1 1]0 0
1 1 0
b
0 0
1 ... 1

D'apres le Théoreme 4, la matrice A est TUM.



Solutions optimales a valeurs entiéres

Conditions nécessaires et suffisantes supplémentaires.

Théoréme 5.

Soit A une matrice de taille m x n contenant seulement les éléments 0, +1
ou —1. Les propositions suivantes sont équivalentes.

Q@ Aest TUM.

@ Pour chaque vecteur b entier, le polyedre Dg = {x | Ax < b, x > 0}
ne possede que des sommets entiers.

© Pour tout ensemble J € {1,---, n} d'indices de colonnes de A, il
existe une partition (J1, J») de J telle que

Z"U‘ZBUZO,%J ou —1, Vie{l,---, n}

J€hM JE€h

(1) < (2) : Hoffman-Hruskal [1956]
(1) & (3) : Ghouila-Houri [1962]

13



Solutions optimales a valeurs entiéres

Exemple. D'aprés le Théoréme 5—(3), la matrice

111
A=1(1 10
1 01

est TUM alors que le Théoreme 4 ne s'applique pas.

14



Méthode de Branch-and-Bound Programmation linéaire en variables binaires

lIl) Méthode de Branch-and-Bound

PL ol I'intégrité de la solution est une contrainte supplémentaire
nécessaire (la matrice des contraintes n'est pas TUM).
1. Programmation linéaire en variables binaires

(a) Cas des coefficients positifs.
Probléme de sac-a-dos.

n
MaXycRrn {F(x) = Z c,-x,}
n i=1
Z a; X < d
i=1

xi € {0,1}

avec les coefficients a; > 0, ¢; > 0.

Il 'y a 2" valeurs possibles de x (toutes ne sont pas réalisables). L'idée de
la méthode de Branch-and-Bound est de ne pas construire I'arbre binaire
en entier et de réduire I'exploration des variables par estimations.

15



Méthode de Branch-and-Bound Programmation linéaire en variables binaires

Principe du Branch-and-Bound.
On examine successivement les variables (valeur 0 ou 1) en construisant
un arbre binaire dont chaque sommet correspond a un sous-ensemble de
solutions réalisables. En un sommet de cet arbre, on a déja examiné k
variables sans connaitre les n — k autres et en ayant écarté :

@ les sous-ensembles impossibles (solution non-réalisable)

@ les sous-ensembles dont on sait que |'optimum ne s'y trouve pas.

16



Méthode de Branch-and-Bound Programmation linéaire en variables binaires

En chaque sommet, on va évaluer 2 estimations.

@ Estimation principale. Elle permet de savoir si un sous-ensemble ne
contient pas 'optimum. Il s’agit d'une majoration de la fonction cofit
F. Pour chaque sommet Si, on évalue la plus petite valeur by telle
que
F(x) < by, V¥xe{0,1}" (1)

o Initialement, on choisit

bp=c+o+--+ac (2)

e On suppose connue une solution réalisable particuliére ayant le coiit F.

Condition d’arrét : si by < F, alors on arréte de construire |'arbre 2
partir de Sy car on sait que I'optimum ne se trouve dans les
sous-ensembles issus de Sy.

17



Méthode de Branch-and-Bound Programmation linéaire en variables binaires

@ Estimation secondaire. Elle permet de savoir si un sous-ensemble
n'est pas réalisable. Il s'agit de déterminer une majoration e, de la
variable d'écart e de la contrainte :

0O<e=d—) aixi< e (3)
i=1

au niveau du sous-ensemble Sy.

o Initialement, on choisit
€ = d. (4)

o Condition d’arrét : si e, < 0, on arréte d'explorer Sy.

18



Méthode de Branch-and-Bound Programmation linéaire en variables binaires

Calcul des estimations b, et ¢.

On se situe au sommet Sy de I'arbre et on examine la variable x; :

X=(Zyeey@yyeneyo)

variables déja examinées x = 0 ou 1
variables non encore examinées : _

estimations (by, ex)

(bry1s 1) (Dri2, ent2)

19



Méthode de Branch-and-Bound Programmation linéaire en variables binaires

En tenant compte de la positivité des coefficients a; > 0 et ¢; > 0, les
estimations (bk+1, €k+1) et (ex+2, ex+2) sont calculées a partir de (b, ex)
selon les formules de mise-a-jour suivantes:

(x; =1) (x; =0)
bit1 = bx bii2 = b — ¢ (5)
€k+1 = €k — aj €k+2 = €k

Stratégie de parcours. On explore en priorité le sommet S, qui a la plus
grande estimation by.

20



Méthode de Branch-and-Bound Programmation linéaire en variables binaires
Exemple. On considere le PL en variables binaires

maxx [F(x) = 16x1 + 18x2 + 15x3]
x1+4x +3x3 <7
x1,x2,x3 € {0,1}

e Détermination d’une solution réalisable particuliére.

On a intérét a trouver un F le plus grand possible. On examine les
variables par coefficients décroissants dans F : d'abord x, (c; = 18) puis
x1 (c1 = 16), enfin x3 (c3 = 15). On note e =7 — (x1 + 4x2 + 3x3) la
variable d’écart.
On prend

xp =1 cequidonnee<7—-4=3

x1 =1, cequidonnealorse<3—-1=2

x3 =1, ce quidonne e <2—3=—1, impossible donc on prend x3 = 0.
On a trouvé ainsi la solution réalisable : x; =1, xo = 1, x3 = 0 avec un
colit correspond F = 34.

21



Méthode de Branch-and-Bound Programmation linéaire en variables binaires

e Estimations initiales. On choisit bg = 16 + 18 + 15 =49, ¢y = 7.
x=(--,-)
(bo = 49, €y = 7)

1 =0

x=(1,.,) x=(0,.,)
(bl = 49,61 = 6) (bg = 33,62 = 7)
arrét car by < F = 34

x=(1,0,.)

(b4 = 31,64 = 6)
arrét car by < F = 34

x=(1,1,.)
(b3 :49, €3 = 2)

x3 =1

x=(1,1,0)
impossible car (bo " 34, €6 . 2)
es =—1<0 solution optimale

On trouve la solution optimale x* = (1,1,0)" et maxx F(x) = F(x*) = 34.
22



Méthode de Branch-and-Bound Programmation linéaire en variables binaires
(b) Cas général.

On ne suppose plus que a; > 0 ni ¢; > 0 pour tout /. S'il existe un
coefficient ¢, < 0, on fait le changement de variable

X, =1-x €{0,1}. (6)

On obtient alors le probleme

n
max |F(x) = Zc,{x,{ +K
i=1

x'€R"
n
Zafx,{gd’:d— Zak
i=1 k tq
<0
x! € {0,1}

ou K est une constante (on peut la supprimer puisqu'elle ne joue aucun
réle dans la procédure d’optimisation) et ¢/ > 0 mais a; de signe
quelconque, pour tout /.

23



Méthode de Branch-and-Bound Programmation linéaire en variables binaires

On procéde de la méme facon que précédemment pour I'estimation de F
sauf pour |'estimation de la variable d'écart e ou il faut tenir compte des
signes des a’. On a les formules de mise-a-jour suivantes pour les
estimations (b}, €} ) :

— /
(Xl _ 1) (X,' - 0)
/ — R / — K /
k+1 = bk S ) k+2_bk_lci )
o ) G—a sia; >0 o ) sia; >0
k1 e} sial <0 kt2 e, +a, sial<0

24



Méthode de Branch-and-Bound Programmation linéaire en variables binaires

Exemple. On consideére le probleme suivant

maxy [F(x) = 12x; — 8x2 + 4x3]
—x1+2xp +4x3 <5
x1,x2,x3 € {0,1}

On pose x5 =1 — xp, x{ = X1, x5 = x3. Le probleme devient (on supprime
la constante K = —8)

maxy [F'(x") = 12x] + 8x5 + 4x5]
—x] —2x5 4+ 4x5 < 3
X1, %9, %3 € {0,1}

e Solution réalisable particuliere : x' = (1,1,1)T avec F = 24.

e Estimations initiales. On a by =12+ 8+ 4 =24 et
e =3+ x] +2x5 —4x; < e) =3+ 142 =06 pour tout xq, x5, x5 € {0,1}.

25



Méthode de Branch-and-Bound Programmation linéaire en variables binaires

(bll =24, 6/1 = 6) (b/Q =12, 6/2 = El))
arrét car by < F =24
x=(1,0,.)

(b = 24,e5 = 6) (b = 16,¢ey = 4)

arrét car by < F =24

x=(1,1,1) )
(b, = 24, ¢}, = 2) (bl = 20, ¢}y = 6)

solution optimale
Solution optimale : x™* = (1,1, l)T, maxy F'(x') = F'(x™*) = 24.
Retour aux variables d'origine, solution optimale du probleme initial :
x* = (1,0,1)T et max, F(x) = F(x*) = 16.
26



Méthode de Branch-and-Bound PL en nombres entiers a valeurs bornées

2. PL en nombres entiers a valeurs bornées

Variables entieres x; € {1,...,m;j} pouri=1,...,n
= arbre avec (m; + 1) branches (sous-ensembles) au sommet ou on

examine la variable x;.

Pour déterminer une solution réalisable particuliere, on examine les
variables par ordre décroissant des coefficients dans F multipliés par les
valeurs maximales permises de chaque variable.

27



Méthodes des coupes Principe général

IV) Méthodes des coupes.

1. Principe général.

Pour résoudre un PL en nombres entiers, on pourrait penser résoudre le
probléme en relachant la contrainte d'intégrité, obtenir une solution
optimale réelle et en prendre un arrondi entier. Cependant, on n’obtient
pas en général la solution optimale entiére de cette facon.

Exemple. Soit le PL
maxy [F(x) = x1 + 0.64x2]
50x1 4+ 31x, < 250
3X1 - 2X2 > —4
x1,x2 € N

Si on résout ce probléme en relachant la contrainte d'intégrité (pb relaxé),
on trouve la solution optimale relaxée (solution réelle) :

x = (376/193, 950/193) ~ (1.948, 4.92)
alors que la solution optimale entiére est donnée par

x = (0, 5).

28



X2

Méthodes des coupes

Principe général

6
solution optimale
relaxée

59 o ° o
49 o o
39 ° °
29 ° °

olution optimale

entiére x*
19 o/
0 . ; .
-2 -1 0 1 2 3 5 6
X1

29



Méthodes des coupes Principe général
Principe général des méthodes de coupes.

On considére le PL en nombres entiers

maxx [F(x) = c’

Ax <b
(P) x>0
x € N”

x|

Il s'agit de méthodes itératives pour résoudre (P) ou a chaque étape :
© On résout un PL sans contrainte d'intégrité. On obtient une solution
optimale qui est généralement non entiére (sinon c’est gagné)

@ On rajoute une contrainte une supplémentaire (une coupe) a partir de
la solution optimale précédente pour forcer la solution a devenir
entiere.

© On recommence en (1) jusqu'a obtenir une solution entiére.

Il'y a différentes coupes possibles.

30



Méthodes des coupes Coupes entieres

2. Coupes entieres.

o

o
o

On résout (Pp), le probleme (P) relaxé i.e. sans contrainte d'intégrité
sur les variables; on obtient une solution optimale x* (si elle existe)
non nécessairement entiére.

Si la solution optimale x* de (Pp) est entiére alors on arréte.

Sinon, il existe une composante x; non-entiére. On construit alors
deux problémes auxiliaires (P1) et (P,) en ajoutant a (Pp) des
contraintes supplémentaires :

maxy [F(x) = c"x] maxy [F(x) = c'x]
Ax <b Ax <b
(P1) § x < [x] (P2) 4 x=Ixc]+1
x>0 x>0

ou || désigne la partie entiere inférieure.

On résout (P1) et (P2). Parmi tous les problemes auxiliaires, on
sélectionne celui dont la solution est réalisable et qui possede le coiit
F le plus élevé. On retourne en (2) avec ce probléme a la place de

(Po).
31



Méthodes des coupes Coupes entieres

Procédure de Branch-and-Bound (coupes entiéres).
@ La phase de séparation (branch) correspond a la construction des
deux problemes (P1) et (Pz).
o La phase d'évaluation (bound) correspond a la détermination d'une
valeur F du coiit pour une solution réalisable entiére particuliere.

32



Méthodes des coupes Coupes entieres

Exemple. On considere le probleme suivant

maxy [F(x) = 13x; + 8x2]
X1+ 2x <10
5x1 +2x < 20
x1,x2 € N

qu’on veut résoudre par coupes entiéres.

Dans la procédure Branch-and-Bound, on utilise également le coiit F
d’'une solution réalisable entiére particuliere.

@ Si on rencontre un coiit F < F 3 un sommet, on arréte I'exploration
de ce sommet.

o Initialement, on choisit F = —oo et on actualise F quand on
rencontre pour la premiére fois une solution réalisable entiére.

@ On actualise la valeur F a chaque fois qu’on obtient une solution
réalisable entiere avec un coiit F plus grand que F. On prend alors
F=F.

33



Méthodes des coupes Coupes entieres

(x1 = 2.5; x9 = 3.75)
F =59.5 (initialisation F = —00)

1 <2 1 >3
(r1 =2; 20 =4) @ (1 = 3; x2 = 2.5)
F =58 F =59
solution réalisable
entiere xo < 2 To > 3

= mise a jour F' = 58

pas de solution

(1 =3.2; 29 = 2) réalisable

F =576
arrét car F' < F = 58

La solution optimale obtenue est x* = (2,4) avec max F(x) = F(x*) = 58.

34



Méthodes des coupes Coupes de Gomory

3. Coupes de Gomory.
A nouveau, on veut résoudre le probleme PL
maxx [F(x) = c"x]
Ax=b
(P) x>0
x e N
On commence par résoudre le probleme (P) relaxé i.e. sans les contraintes

d'intégrité sur les variables. On obtient une solution de base optimale x*
(par simplexe) non nécessairement entiére. On a

X*
x* = ( f) avec xj; = 0.
XH

On note |x] la partie entiére inférieure et {x} la partie fractionnaire de x :

x| <x < |x|+1,
0<{x}=x—[x] <1

35



Méthodes des coupes Coupes de Gomory

Proposition 1. Coupes de Gomory entiéres

: X AT X ,
Soit x = (xB> une solution réalisable du probleme (P) relaxé (pas
H

forcément entiére donc), décomposée selon la base optimale B. On a

xg = X5 — Mxy (avec M = ABIAH)

On suppose que la composante (x%). n'est pas entiére. On a
pp q p B); p

e:=—{(xg);} + 2 AM;}(xn); = 0 (7)

Cette nouvelle contrainte sur les variables hors-base x (avec une nouvelle
variable d'écart e) est appelée coupe de Gomory entiére.

Utilisation de la coupe : on résout le probleme (P) relaxé en rajoutant
cette contrainte (7) et on itére jusqu'a obtenir une solution optimale
entiere.

36



Méthodes des coupes Coupes de Gomory

Preuve de la Proposition 1. On a
(xg); = (xg); — Mixy ou M; est la i-eme ligne de M

& (xg) .+ZM,-,- (xn); = (xB);

& (xe); +Z( i)+ (M) (), = L(5),) + {xB)} - (8)
>0 >0

d'ol
(xg); + Y[ Myl(xn); < [(x5);] + {(x5);}
J
On cherche une solution réalisable entiére donc (xg); + >_;| Mjj|(xn); est
entier, d'ou

(x8); +Z Myl (xh); < L(x8);) (9)

En combinant (8) et (9), on obtient {(x3);} < > ,{M;}(xn); O



Méthodes des coupes Coupes de Gomory

Exemple. On veut résoudre le probleme suivant avec les coupes de
Gomory :
maxy [F(x) = 2x1 + x2]
x1+x <4
x1—4x0 <0
x1,x2 € N

On consideére le probleme relaxé sous forme standard :

maxy [F(x) = 2x1 + x2]
x1+x2+e =4
(P) x1—4x+e =0
X1,X2,€1,6 >0

38



Méthodes des coupes Coupes de Gomory

La solution de base optimale de (P) est (par simplexe)

= (5 )= (05 )= (58 ) =(2)-(3)

avec
(1 1 4 1/4 1 (1
AB_(I —4)’AB_5<1 —1>’AH_<0
et
1/4 1
_ a1 _ -
M_ABAH_5<1 _1>.
On a

My = (4/5,1/5) = {Mi}=(4/5, 1/5)

My = (1/5, —-1/5) = {M}=(1/5, 4/5) car |-1/5] = —1.

Deux coupes de Gomory possibles :

o Coupe de Gomory 1. Elle s'écrit {M1} - xy > {(xg),} = 0.2 = 1/5, soit

= *1 >*1<:>4 >1
er + e +e
51 562_5 1 2 Z

(10)
39



Méthodes des coupes Coupes de Gomory

o Coupe de Gomory 2. Elle s'écrit {Ma} - xy > {(xg),} = 0.8 = 4/5, soit

1 4 4
ge1+562>5<:>e1+4e2>4 (11)

Pour mieux comprendre et interpréter les coupes de Gomory, on peut
exprimer (€1, &) en fonction des variables de base x; et x,. On a

61:4*X1*X2
e =—x1+4x

Les contraintes (10), (11) deviennent alors

x <3 (12)
x1 —3x <0 (13)
On ajoute les contraintes (12), (1 (P). On obtient alors la solution
optimale x5 = ( ) < i > qui est entiere, avec max F(x) = 7.

40



Méthodes des coupes Coupes de Gomory

6 .
\
\
\
5 \
1 \
\ %
\\ 5
\ 3/ X1 =3 (coupe 1)
4<
% v o
+ \
SN \
31 £ \ - .
\\ solution optimale
\ entiére x”
\ ,
2] \ / ope?)
\ _o\¢
\ _3%
\ b3y
0
14 —AX2=
X1 A
\
\
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4. Coupes de Gomory et algorithme du simplexe dual.

Dans la pratique, une fois une coupe de Gomory déterminée, on ajoute la
variable d'écart e associée a cette contrainte (cf. (7)), comme une variable
de base :

e:= —{(xg);} + Z{aij}(xf")j (14)

@ On obtient ainsi une nouvelle solution de base qui reste optimale (les
colits réduits restent négatifs) mais qui n’est pas réalisable car sa valeur

—{(xg),} est <0.

L’algorithme du simplexe dual est alors bien adapté pour obtenir une
solution de base réalisable : on cherche un changement de base B — B’
permettant d'annuler la variable e.

- La variable sortante est donc e.

- Pour déterminer la variable entrante, on maintient les colits réduits
négatifs.
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Méthodes des coupes Coupes de Gomory et simplexe dual

Reprenons I'exemple précédent en ajoutant la coupe de Gomory 1. dans le

dictionnaire i.e. dey + &g > 1< e3=—1+4e; + e >0 (e3 est la
nouvelle variable) :

X1 = % 587 5@
X2 = %*%914“%32
&3 = —l+de+e
F= % tai=

@ Variable sortante : c'est e3 !
@ Variable entrante.

1. On envisage le passage de e; en base. En substituant |'expression de e;

dans F, on obtient

B9 i 2L

~ 20 202720 5%
——
>0

Le coiit réduit de e, devient positif, la solution n’est plus optimale
=> €1 ne peut pas rentrer en base.
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2. On envisage le passage de e; en base. En substituant I'expression de
e dans F, on obtient

1 1 9
Fe7-2 o2
531 (5~ 5g)e
—
<0

Les cofits réduits sont tous négatifs, la solution obtenue est réalisable
et optimale = e entre en base. La solution optimale est

X1:3, X2:17 62:]_.

On a obtenu une solution optimale entiere.
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Remarques sur les coupes de Gomory.

@ L'utilisation réitérée des coupes de Gomory avec le simplexe dual
converge en un nombre fini d'itérations vers une solution optimale
entiére sous les conditions suivantes :

o Choix de la coupe : on choisit la coupe (7) avec la composante i telle
que {(xg);} = maxkes{(xg),} i-e. la variable de base non-entiére qui
a la partie fractionnaire la plus grande.

e Dans le simplexe dual, si une variable d'écart e d'une coupe rentre en
base, supprimer la coupe (supprimer la variable e et la ligne
correspondante dans le dictionnaire).

@ Ralph Gomory a inventé les coupes pour les PLNE dans les années
1960. Pour des problemes mixtes (MILP) ou toutes les variables ne
sont pas forcément entieres, Gomory établit peu de temps aprés un
autre type de coupes, appelées coupes GMI (Gomory mixed integer
cuts). Les premiers essais numériques furent assez décevants a

['époque.
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Au début des années 90, des chercheurs (G. Cornuéjols, S. Ceria)
sont amenés a re-tester les coupes de Gomory (les GMI) pour com-
parer avec leurs propres travaux et s'apercoivent qu'elles sont finale-
ment performantes, en particulier pour de grands problemes?.

Les coupes GMI sont plus générales et plus performantes que les
coupes initiales de Gomory, méme pour les PLNE. Ce sont ces coupes
qui sont utilisées désormais dans la plupart des solveur actuels.

‘les solveurs simplexes ayant fait aussi beaucoup de progrés depuis 30 ans et
continuent d’en faire.
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